December 2018, 23(10): 4141-4170. doi: 10.3934/dcdsb.2018130

Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (Ⅱ)

1. 

College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350116, China

2. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author: Xingwu Chen(xingwu.chen@hotmail.com)

Received  August 2017 Revised  December 2017 Published  April 2018

Fund Project: The first author is supported by NSFC grant 11572263. The second author is supported by NSFC grant 11471228

The degenerate Bogdanov-Takens system $\dot x = y-(a_1x+a_2x^3),~\dot y = a_3x+a_4x^3$ has two normal forms, one of which is investigated in [Disc. Cont. Dyn. Syst. B (22)2017,1273-1293] and global behavior is analyzed for general parameters. To continue this work, in this paper we study the other normal form and perform all global phase portraits on the Poincaré disc. Since the parameters are not restricted to be sufficiently small, some classic bifurcation methods for small parameters, such as the Melnikov method, are no longer valid. We find necessary and sufficient conditions for existences of limit cycles and homoclinic loops respectively by constructing a distance function among orbits on the vertical isocline curve and further give the number of limit cycles for parameters in different regions. Finally we not only give the global bifurcation diagram, where global existences and monotonicities of the homoclinic bifurcation curve and the double limit cycle bifurcation curve are proved, but also classify all global phase portraits.

Citation: Hebai Chen, Xingwu Chen. Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (Ⅱ). Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4141-4170. doi: 10.3934/dcdsb.2018130
References:
[1]

S. M. BaerB. W. KooiYu. A. Kuznetsov and H. R. Thieme, Multiparametric bifurcation analysis of a basic two-stage population model, SIAM J. Appl. Math., 66 (2006), 1339-1365. doi: 10.1137/050627757.

[2]

J. Carr, Applications of Center Manifold Theory, Springer-Verlag, New York, 1981.

[3]

C. Castillo-ChavezZ. Feng and W. Huang, Global dynamics of a Plant-Herbivore model with toxin-determined functional response, SIAM J. Appl. Math., 72 (2012), 1002-1020. doi: 10.1137/110851614.

[4]

H. ChenX. Chen and J. Xie, Global phase portrait of a degenerate Bogdanov-Takens system with symmetry, Discrete Cont. Dyn. Syst. (Ser. B), 22 (2017), 1273-1293. doi: 10.3934/dcdsb.2017062.

[5]

S. -N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, London, 1994.

[6]

F. Dumortier and C. Li, On the uniqueness of limit cycles surrounding one or more singularities in Liénard equations, Nonlinearity, 9 (1996), 1489-1500. doi: 10.1088/0951-7715/9/6/006.

[7]

F. Dumortier and C. Li, Quadratic Liénard equations with quadratic damping, J. Differential Equations, 139 (1997), 41-59. doi: 10.1006/jdeq.1997.3291.

[8]

F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (Ⅰ) Saddle Loop and Two saddle Cycle, J. Differential Equations, 176 (2001), 114-157. doi: 10.1006/jdeq.2000.3977.

[9]

F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (Ⅱ)Cuspidal Loop, J. Differential Equations, 175 (2001), 209-243. doi: 10.1006/jdeq.2000.3978.

[10]

F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (Ⅲ)global centre, J. Differential Equations, 188 (2003), 473-511. doi: 10.1016/S0022-0396(02)00110-9.

[11]

F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (Ⅳ)figure eight-loop, J. Differential Equations, 188 (2003), 512-554. doi: 10.1016/S0022-0396(02)00111-0.

[12]

F. Dumortier, J. Llibre and J. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, New York, 2006.

[13]

F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek, Bifurcations of Planar Vector Fields. Nilpotent Singularities and Abelian integrals, Springer-Verlag, Berlin, 1991.

[14]

F. Dumortier and C. Rousseau, Cubic Liénard equations with linear damping, Nonlinearity, 3 (1990), 1015-1039. doi: 10.1088/0951-7715/3/4/004.

[15]

A. GasullH. GiacominiS. Pérez-González and J. Torregrosa, A proof of Perko's conjectures for the Bogdanov-Takens system, J. Diff. Equa., 255 (2013), 2655-2671. doi: 10.1016/j.jde.2013.07.006.

[16]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1990.

[17]

J. Hale, Ordinary Differential Equations, Krieger Publishing Company, Florida, 1980.

[18]

P. Holmes and D. A. Rand, Phase portraits and bifurcations of the nonlinear oscillator $\ddot x+(α+γ x^2)\dot x+β x+δ x^3 = 0$, Int. J. Non-linear Mech., 15 (1980), 449-458.

[19]

E. Horozov, Versal deformations of equivariant vector fields for cases of symmetry of order 2 and 3(In Russian), Trusdy Sem. Petrov., 5 (1979), 163-192.

[20]

A. KhibnikB. Krauskopf and C. Rousseau, Global study of a family of cubic Liénard equations, Nonlinearity, 11 (1998), 1505-1519. doi: 10.1088/0951-7715/11/6/005.

[21]

Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory(Third Edition), Springer-Verlag, New York, 2004.

[22]

Yu. A. Kuznetsov, Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations, Int. J. Bifurc. Chaos, 15 (2005), 3535-3546. doi: 10.1142/S0218127405014209.

[23]

C. Li and J. Llibre, Uniqueness of limit cycles for Liénard differential equations of degree four, J. Differential Equations, 252 (2012), 3142-3162. doi: 10.1016/j.jde.2011.11.002.

[24]

A. LinsW. de Melo and C. C. Pugh, On Liénard's equation, Lecture Notes in Math., 597 (1977), 1172-1192.

[25]

L. M. Perko, A global analysis of the Bogdanov-Takens system, SIAM J. Appl. Math., 52 (1992), 1172-1192. doi: 10.1137/0152069.

[26]

L. A. F. Roberto, P. R. da Silva and J. Torregrosa, Asymptotic expansion of the heteroclinic bifurcation for the planar normal form of the 1: 2 resonance, Int. J. Bifurc. Chaos, 26 (2016), 1650017, 8 pp. doi: 10.1142/S0218127416500176.

[27]

S. Ruan and D. Xiao, Global analysis in a Predator-Prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445-1472.

[28]

G. Sansone and R. Conti, Non-linear Differential Equations, Pergamon Press, Oxford City, 1964.

[29]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1992.

show all references

References:
[1]

S. M. BaerB. W. KooiYu. A. Kuznetsov and H. R. Thieme, Multiparametric bifurcation analysis of a basic two-stage population model, SIAM J. Appl. Math., 66 (2006), 1339-1365. doi: 10.1137/050627757.

[2]

J. Carr, Applications of Center Manifold Theory, Springer-Verlag, New York, 1981.

[3]

C. Castillo-ChavezZ. Feng and W. Huang, Global dynamics of a Plant-Herbivore model with toxin-determined functional response, SIAM J. Appl. Math., 72 (2012), 1002-1020. doi: 10.1137/110851614.

[4]

H. ChenX. Chen and J. Xie, Global phase portrait of a degenerate Bogdanov-Takens system with symmetry, Discrete Cont. Dyn. Syst. (Ser. B), 22 (2017), 1273-1293. doi: 10.3934/dcdsb.2017062.

[5]

S. -N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, London, 1994.

[6]

F. Dumortier and C. Li, On the uniqueness of limit cycles surrounding one or more singularities in Liénard equations, Nonlinearity, 9 (1996), 1489-1500. doi: 10.1088/0951-7715/9/6/006.

[7]

F. Dumortier and C. Li, Quadratic Liénard equations with quadratic damping, J. Differential Equations, 139 (1997), 41-59. doi: 10.1006/jdeq.1997.3291.

[8]

F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (Ⅰ) Saddle Loop and Two saddle Cycle, J. Differential Equations, 176 (2001), 114-157. doi: 10.1006/jdeq.2000.3977.

[9]

F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (Ⅱ)Cuspidal Loop, J. Differential Equations, 175 (2001), 209-243. doi: 10.1006/jdeq.2000.3978.

[10]

F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (Ⅲ)global centre, J. Differential Equations, 188 (2003), 473-511. doi: 10.1016/S0022-0396(02)00110-9.

[11]

F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (Ⅳ)figure eight-loop, J. Differential Equations, 188 (2003), 512-554. doi: 10.1016/S0022-0396(02)00111-0.

[12]

F. Dumortier, J. Llibre and J. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, New York, 2006.

[13]

F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek, Bifurcations of Planar Vector Fields. Nilpotent Singularities and Abelian integrals, Springer-Verlag, Berlin, 1991.

[14]

F. Dumortier and C. Rousseau, Cubic Liénard equations with linear damping, Nonlinearity, 3 (1990), 1015-1039. doi: 10.1088/0951-7715/3/4/004.

[15]

A. GasullH. GiacominiS. Pérez-González and J. Torregrosa, A proof of Perko's conjectures for the Bogdanov-Takens system, J. Diff. Equa., 255 (2013), 2655-2671. doi: 10.1016/j.jde.2013.07.006.

[16]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1990.

[17]

J. Hale, Ordinary Differential Equations, Krieger Publishing Company, Florida, 1980.

[18]

P. Holmes and D. A. Rand, Phase portraits and bifurcations of the nonlinear oscillator $\ddot x+(α+γ x^2)\dot x+β x+δ x^3 = 0$, Int. J. Non-linear Mech., 15 (1980), 449-458.

[19]

E. Horozov, Versal deformations of equivariant vector fields for cases of symmetry of order 2 and 3(In Russian), Trusdy Sem. Petrov., 5 (1979), 163-192.

[20]

A. KhibnikB. Krauskopf and C. Rousseau, Global study of a family of cubic Liénard equations, Nonlinearity, 11 (1998), 1505-1519. doi: 10.1088/0951-7715/11/6/005.

[21]

Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory(Third Edition), Springer-Verlag, New York, 2004.

[22]

Yu. A. Kuznetsov, Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations, Int. J. Bifurc. Chaos, 15 (2005), 3535-3546. doi: 10.1142/S0218127405014209.

[23]

C. Li and J. Llibre, Uniqueness of limit cycles for Liénard differential equations of degree four, J. Differential Equations, 252 (2012), 3142-3162. doi: 10.1016/j.jde.2011.11.002.

[24]

A. LinsW. de Melo and C. C. Pugh, On Liénard's equation, Lecture Notes in Math., 597 (1977), 1172-1192.

[25]

L. M. Perko, A global analysis of the Bogdanov-Takens system, SIAM J. Appl. Math., 52 (1992), 1172-1192. doi: 10.1137/0152069.

[26]

L. A. F. Roberto, P. R. da Silva and J. Torregrosa, Asymptotic expansion of the heteroclinic bifurcation for the planar normal form of the 1: 2 resonance, Int. J. Bifurc. Chaos, 26 (2016), 1650017, 8 pp. doi: 10.1142/S0218127416500176.

[27]

S. Ruan and D. Xiao, Global analysis in a Predator-Prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445-1472.

[28]

G. Sansone and R. Conti, Non-linear Differential Equations, Pergamon Press, Oxford City, 1964.

[29]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1992.

Figure 1.  Equilibria at infinity
Figure 2.  Limit cycles surrounding $O$
Figure 3.  Discussion in the case that $-a\leq b<0$
Figure 4.  Two large limit cycles
Figure 5.  $a$, $b$ satisfy condition (c4)
Figure 6.  Location of $x_A, x_B$
Figure 7.  Discussion on existence of limit cycles
Figure 8.  Discussion about the perturbation system
Figure 9.  Discussion about $\Pi(\rho, a, b)$
Figure 10.  Bifurcation diagram of (5) if $N_2^+$ does not intersect $DL, HL$
Figure 11.  Global phase portraits for $a\le 0$
Figure 12.  Global phase portraits for $a>0$
Figure 13.  Bifurcation diagram of (5) if $N_2^+$ intersects $DL, HL$
Figure 14.  More global phase portraits if $N_2^+$ intersects $DL, HL$
Figure 15.  More global phase portraits for special parameters
Figure 16.  The numerical phase portraits when $a = 1$
Table 1.  Equilibria in finite planes
possibilities of $(a, b)$ location of equilibria types and stability
$a<0$ $b<-2\sqrt{-a}$ $E_0$ $E_0$ unstable bidirectional node
$b=-2\sqrt{-a}$ $E_0$ $E_0$ unstable proper node
$-2\sqrt{-a}<b<0$ $E_0$ $E_0$ unstable focus
$b=0$ $E_0$ $E_0$ stable weak focus of order one
$0<b<2\sqrt{-a}$ $E_0$ $E_0$ stable focus
$b=2\sqrt{-a}$ $E_0$ $E_0$ stable proper node
$b>2\sqrt{-a}$ $E_0$ $E_0$ stable bidirectional node
$a=0$ $b\geq0$ $E_0$ $E_0$ stable degenerate node
$b<0$ $E_0$ $E_0$ unstable degenerate node
$a>0$ $b<-3a-2\sqrt{2a}$ $E_R$, $E_0$, $E_L$ $E_0$ saddle; $E_R$, $E_L$ unstable nodes
$b=-3a-2\sqrt{2a}$ $E_R$, $E_0$, $E_L$ $E_0$ saddle; $E_R$, $E_L$ unstable proper nodes
$-3a-2\sqrt{2a}<b<-3a$ $E_R$, $E_0$, $E_L$ $E_0$ saddle; $E_R$, $E_L$ unstable foci
$b=-3a$ $E_R$, $E_0$, $E_L$ $E_0$ saddle;
$E_R$, $E_L$ unstable weak foci of order one
$-3a<b<-3a+2\sqrt{2a}$ $E_R$, $E_0$, $E_L$ $E_0$ saddle; $E_R$, $E_L$ stable foci
$b=-3a+2\sqrt{2a}$ $E_R$, $E_0$, $E_L$ $E_0$ saddle; $E_R$, $E_L$ stable proper nodes
$b>-3a+2\sqrt{2a}$ $E_R$, $E_0$, $E_L$ $E_0$ saddle; $E_R$, $E_L$ stable nodes
possibilities of $(a, b)$ location of equilibria types and stability
$a<0$ $b<-2\sqrt{-a}$ $E_0$ $E_0$ unstable bidirectional node
$b=-2\sqrt{-a}$ $E_0$ $E_0$ unstable proper node
$-2\sqrt{-a}<b<0$ $E_0$ $E_0$ unstable focus
$b=0$ $E_0$ $E_0$ stable weak focus of order one
$0<b<2\sqrt{-a}$ $E_0$ $E_0$ stable focus
$b=2\sqrt{-a}$ $E_0$ $E_0$ stable proper node
$b>2\sqrt{-a}$ $E_0$ $E_0$ stable bidirectional node
$a=0$ $b\geq0$ $E_0$ $E_0$ stable degenerate node
$b<0$ $E_0$ $E_0$ unstable degenerate node
$a>0$ $b<-3a-2\sqrt{2a}$ $E_R$, $E_0$, $E_L$ $E_0$ saddle; $E_R$, $E_L$ unstable nodes
$b=-3a-2\sqrt{2a}$ $E_R$, $E_0$, $E_L$ $E_0$ saddle; $E_R$, $E_L$ unstable proper nodes
$-3a-2\sqrt{2a}<b<-3a$ $E_R$, $E_0$, $E_L$ $E_0$ saddle; $E_R$, $E_L$ unstable foci
$b=-3a$ $E_R$, $E_0$, $E_L$ $E_0$ saddle;
$E_R$, $E_L$ unstable weak foci of order one
$-3a<b<-3a+2\sqrt{2a}$ $E_R$, $E_0$, $E_L$ $E_0$ saddle; $E_R$, $E_L$ stable foci
$b=-3a+2\sqrt{2a}$ $E_R$, $E_0$, $E_L$ $E_0$ saddle; $E_R$, $E_L$ stable proper nodes
$b>-3a+2\sqrt{2a}$ $E_R$, $E_0$, $E_L$ $E_0$ saddle; $E_R$, $E_L$ stable nodes
Table 2.  Limit cycles and homoclinic loops to Figure 10
$(a, b)\in $ limit cycles homoclinic loops
$I, N_1^-, II$ one stable, small, surrounding $E_0$ no
$III, N_1^+, IV$ no no
$V, N_{2}^+, VI$ no no
$DL$ one semi-stable, large no
two, large, no
$X$ the inner one is unstable, the outer one is stable
$HL$ one stable, large one unstable figure-eight type
one stable, large;
$IX$ one unstable, small, surrounding $E_L$; no
one unstable, small, surrounding $E_R$;
$VII, VIII, N_2^-$ one stable, large no
$(a, b)\in $ limit cycles homoclinic loops
$I, N_1^-, II$ one stable, small, surrounding $E_0$ no
$III, N_1^+, IV$ no no
$V, N_{2}^+, VI$ no no
$DL$ one semi-stable, large no
two, large, no
$X$ the inner one is unstable, the outer one is stable
$HL$ one stable, large one unstable figure-eight type
one stable, large;
$IX$ one unstable, small, surrounding $E_L$; no
one unstable, small, surrounding $E_R$;
$VII, VIII, N_2^-$ one stable, large no
Table 3.  Limit cycles and homoclinic loops
$(a, b)\in $ limit cycles homoclinic loops
$\tilde V, N_{21}^+$ no no
$DL_1, DL_2, DL_3$ one semi-stable, large no
two, large, no
$\tilde X, N_{22}^+, XI$ inner one is unstable, outer one is stable
$HL_1, HL_2, HL_3$ one stable, large one unstable figure-eight type
one stable, large; two unstable, small;
$\widetilde{IX}, N_{23}^+, XII$ surrounding $E_L, E_R$ separately; no
$(a, b)\in $ limit cycles homoclinic loops
$\tilde V, N_{21}^+$ no no
$DL_1, DL_2, DL_3$ one semi-stable, large no
two, large, no
$\tilde X, N_{22}^+, XI$ inner one is unstable, outer one is stable
$HL_1, HL_2, HL_3$ one stable, large one unstable figure-eight type
one stable, large; two unstable, small;
$\widetilde{IX}, N_{23}^+, XII$ surrounding $E_L, E_R$ separately; no
[1]

Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062

[2]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[3]

Qiuyan Zhang, Lingling Liu, Weinian Zhang. Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1499-1514. doi: 10.3934/mbe.2017078

[4]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[5]

Antonio Garijo, Armengol Gasull, Xavier Jarque. Local and global phase portrait of equation $\dot z=f(z)$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 309-329. doi: 10.3934/dcds.2007.17.309

[6]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

[7]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[8]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[9]

Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846

[10]

Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

[11]

Majid Gazor, Mojtaba Moazeni. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 205-224. doi: 10.3934/dcds.2015.35.205

[12]

Hayato Chiba. Continuous limit and the moments system for the globally coupled phase oscillators. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1891-1903. doi: 10.3934/dcds.2013.33.1891

[13]

Pierluigi Colli, Gianni Gilardi, Pavel Krejčí, Jürgen Sprekels. A vanishing diffusion limit in a nonstandard system of phase field equations. Evolution Equations & Control Theory, 2014, 3 (2) : 257-275. doi: 10.3934/eect.2014.3.257

[14]

Yasuhito Miyamoto. Global bifurcation and stable two-phase separation for a phase field model in a disk. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 791-806. doi: 10.3934/dcds.2011.30.791

[15]

Zhiqin Qiao, Deming Zhu, Qiuying Lu. Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1009-1025. doi: 10.3934/dcdsb.2012.17.1009

[16]

Julián López-Gómez, Marcela Molina-Meyer, Paul H. Rabinowitz. Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 923-946. doi: 10.3934/dcdsb.2017047

[17]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[18]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[19]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[20]

Magdalena Caubergh, Freddy Dumortier, Robert Roussarie. Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle. Communications on Pure & Applied Analysis, 2007, 6 (1) : 1-21. doi: 10.3934/cpaa.2007.6.1

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (71)
  • HTML views (464)
  • Cited by (0)

Other articles
by authors

[Back to Top]