• Previous Article
    A comparative study on nonlocal diffusion operators related to the fractional Laplacian
  • DCDS-B Home
  • This Issue
  • Next Article
    A period doubling route to spatiotemporal chaos in a system of Ginzburg-Landau equations for nematic electroconvection
January 2019, 24(1): 257-272. doi: 10.3934/dcdsb.2018107

An FEM-MLMC algorithm for a moving shutter diffraction in time stochastic model

1. 

Department of Applied Mathematics & Statistics, Colorado School of Mines, Golden, CO 80401, USA

2. 

National Renewable Energy Laboratory, Golden, CO 80401, USA

* Corresponding author: B. Reyes

Received  April 2017 Revised  January 2018 Published  March 2018

Fund Project: The authors are supported by an NREL grant UGA-0-41025-117

We consider a moving shutter and non-deterministic generalization of the diffraction in time model introduced by Moshinsky several decades ago to study a class of quantum transients. We first develop a moving-mesh finite element method (FEM) to simulate the determisitic version of the model. We then apply the FEM and multilevel Monte Carlo (MLMC) algorithm to the stochastic moving-domain model for simulation of approximate statistical moments of the density profile of the stochastic transients.

Citation: Mahadevan Ganesh, Brandon C. Reyes, Avi Purkayastha. An FEM-MLMC algorithm for a moving shutter diffraction in time stochastic model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 257-272. doi: 10.3934/dcdsb.2018107
References:
[1]

C. J. BuddW. Huang and R. D. Russell, Adaptivity with moving grids, Acta Numerica, 18 (2009), 111-241.

[2]

A. del CampoG. Garcia-Calderón and J. Muga, Quantum transients, Phys. Reports, 476 (2009), 1-50.

[3]

J. DickF. Y. KuoQ. L. Gia and C. Schwab, Multilevel higher order QMC Petrov-Galerkin discretization for affine parametric operator equations, SIAM J. NUMER. ANAL., 54 (2016), 2541-2568. doi: 10.1137/16M1078690.

[4]

M. Giles, Multilevel Monte Carlo methods, Acta Numerica, 24 (2015), 259-328. doi: 10.1017/S096249291500001X.

[5]

P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, New York, 2004.

[6]

A. Goussev, Diffraction in time: An exactly solvable model, Phys. Review A, 87 (2012), 053621. doi: 10.1103/PhysRevA.87.053621.

[7]

T. KimuraN. Sato and S. Iwata, Application of the higher order finite-element method to one-dimensional Schrödinger equation, J. Comput. Chem., 9 (1998), 827-835. doi: 10.1002/jcc.540090805.

[8]

T. E. LeeM. J. Baines and S. Langdon, A finite difference moving mesh method based on conservation for moving boundary problems, J. Comput. Appl. Math., 288 (2015), 1-17. doi: 10.1016/j.cam.2015.03.032.

[9]

O. P. L. Maître and O. M. Kino, Spectral Methods for Uncertainty Quantification, Springer, 2010.

[10]

M. Moshinsky, Diffraction in time, Phys. Review, 88 (1952), 625-631. doi: 10.1103/PhysRev.88.625.

[11]

A. NissenG. Kreiss and M. Gerritsen, High order stable finite difference methods for the Schrödinger equation, J. Sci. Computing, 55 (2013), 173-199. doi: 10.1007/s10915-012-9628-1.

[12]

Z. Romanowski, Application of h-adaptive, high order finite element method to solve radial Schrödinger equation, Molecular Physics, 107 (2009), 1339-1348. doi: 10.1080/00268970902873554.

show all references

References:
[1]

C. J. BuddW. Huang and R. D. Russell, Adaptivity with moving grids, Acta Numerica, 18 (2009), 111-241.

[2]

A. del CampoG. Garcia-Calderón and J. Muga, Quantum transients, Phys. Reports, 476 (2009), 1-50.

[3]

J. DickF. Y. KuoQ. L. Gia and C. Schwab, Multilevel higher order QMC Petrov-Galerkin discretization for affine parametric operator equations, SIAM J. NUMER. ANAL., 54 (2016), 2541-2568. doi: 10.1137/16M1078690.

[4]

M. Giles, Multilevel Monte Carlo methods, Acta Numerica, 24 (2015), 259-328. doi: 10.1017/S096249291500001X.

[5]

P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, New York, 2004.

[6]

A. Goussev, Diffraction in time: An exactly solvable model, Phys. Review A, 87 (2012), 053621. doi: 10.1103/PhysRevA.87.053621.

[7]

T. KimuraN. Sato and S. Iwata, Application of the higher order finite-element method to one-dimensional Schrödinger equation, J. Comput. Chem., 9 (1998), 827-835. doi: 10.1002/jcc.540090805.

[8]

T. E. LeeM. J. Baines and S. Langdon, A finite difference moving mesh method based on conservation for moving boundary problems, J. Comput. Appl. Math., 288 (2015), 1-17. doi: 10.1016/j.cam.2015.03.032.

[9]

O. P. L. Maître and O. M. Kino, Spectral Methods for Uncertainty Quantification, Springer, 2010.

[10]

M. Moshinsky, Diffraction in time, Phys. Review, 88 (1952), 625-631. doi: 10.1103/PhysRev.88.625.

[11]

A. NissenG. Kreiss and M. Gerritsen, High order stable finite difference methods for the Schrödinger equation, J. Sci. Computing, 55 (2013), 173-199. doi: 10.1007/s10915-012-9628-1.

[12]

Z. Romanowski, Application of h-adaptive, high order finite element method to solve radial Schrödinger equation, Molecular Physics, 107 (2009), 1339-1348. doi: 10.1080/00268970902873554.

Figure 1.  An illustration of the DiT model governed by a moving shutter with speed $\gamma\,^\prime (t)$ and a continuous initial state. The shutter on the left represents the closed shutter's position at $t = 0$ and the right shutter is a closed shutter at the position determined by $\gamma (t)$.
Figure 2.  Two realizations of moving-mesh configurations.
Figure 3.  Simulated density profiles at three discrete times steps
Figure 6.  Total CPU time to simulate the expected value of the QoI using the MC and MLMC algorithms with $\epsilon = [N_{MC}]^{-1/2}$.
Figure 4.  Variance for four levels of $Q^{(\ell)}$ and $Q^{(\ell)} - Q^{(\ell-1)}$
Figure 5.  Adaptively chosen values of $N_{{\rm{MLMC}}}^{(\ell)},~\ell = 0,1, 2, 3$ for four distinct choices of $\epsilon$ as in Table 3.
Table 1.  Convergence of the moving-mesh FEM DiT model using a reference solution with $M_{\Delta t}^{fine} = N_h^{fine} = 20480$.
$N_h$ $Err^{max}(N_h; 20480) $ EOC of $Err^{max}$
80 3.1601e-01
160 1.3607e-01 1.2156
320 5.3584e-02 1.3445
640 2.1350e-02 1.3276
1280 1.0176e-02 1.0691
2560 4.9566e-03 1.0377
5120 1.7975e-03 1.4633
10240 3.8505e-04 2.2229
$N_h$ $Err^{max}(N_h; 20480) $ EOC of $Err^{max}$
80 3.1601e-01
160 1.3607e-01 1.2156
320 5.3584e-02 1.3445
640 2.1350e-02 1.3276
1280 1.0176e-02 1.0691
2560 4.9566e-03 1.0377
5120 1.7975e-03 1.4633
10240 3.8505e-04 2.2229
Table 2.  $\mathbb{E}_{\rm{mc}} \left[Q; N_{MC} \right]$ values obtained using the standard MC method.
$N_{MC}$ $10,000$ $50,000$ $100,000$ $500,000$
$\epsilon = [N_{MC}]^{-1/2}$ $0.0100$ $0.0045$ $0.0032$ $0.0014$
$\mathbb{E}_{\rm{mc}} \left[Q; N_{MC} \right]$ 4.6156 4.6199 4.6282 4.6289
$N_{MC}$ $10,000$ $50,000$ $100,000$ $500,000$
$\epsilon = [N_{MC}]^{-1/2}$ $0.0100$ $0.0045$ $0.0032$ $0.0014$
$\mathbb{E}_{\rm{mc}} \left[Q; N_{MC} \right]$ 4.6156 4.6199 4.6282 4.6289
Table 3.  $\mathbb{E}_{{\rm{MLMC}}}^{(3)}\left[Q^{(3)}\right]$ values obtained using the MLMC algorithm with level dependent space-time mesh parameters as stated in (35).
$\epsilon$ $0.0100$ $0.0045$ $0.0032$ $0.0014$
$\mathbb{E}_{{\rm{MLMC}}}^{(3)}\left[Q^{(3)}\right]$ 4.6256 4.6307 4.6276 4.6276
$\epsilon$ $0.0100$ $0.0045$ $0.0032$ $0.0014$
$\mathbb{E}_{{\rm{MLMC}}}^{(3)}\left[Q^{(3)}\right]$ 4.6256 4.6307 4.6276 4.6276
[1]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[2]

Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81

[3]

Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683

[4]

Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125

[5]

Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313

[6]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[7]

Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025

[8]

Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947

[9]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[10]

Hector D. Ceniceros. A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2002, 1 (1) : 1-18. doi: 10.3934/cpaa.2002.1.1

[11]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[12]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[13]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[14]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[15]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[16]

So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343

[17]

Donald L. Brown, Vasilena Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1299-1326. doi: 10.3934/dcdss.2016052

[18]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[19]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[20]

Jinchao Xu. The single-grid multilevel method and its applications. Inverse Problems & Imaging, 2013, 7 (3) : 987-1005. doi: 10.3934/ipi.2013.7.987

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (26)
  • HTML views (535)
  • Cited by (0)

[Back to Top]