January 2019, 24(1): 197-209. doi: 10.3934/dcdsb.2018097

Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation

1. 

Department of Mathematics, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, USA

2. 

Department of Mathematics, University of Kansas, 1460 Jayhawk Boulevard, Lawrence KS 66045-7523, USA

Received  January 2017 Revised  July 2017 Published  March 2018

Fund Project: Stanislavova supported in part by NSF-DMS # 1516245

In this paper, we study numerically the existence and stability of some special solutions of the nonlinear beam equation: $u_{tt}+u_{xxxx}+u-|u|^{p-1} u = 0$ when $p = 3$ and $p = 5$. For the standing wave solutions $u(x, t) = e^{iω t}\varphi_{ω}(x)$ we numerically illustrate their existence using variational approach. Our numerics illustrate the existence of both ground states and excited states. We also compute numerically the threshold value $ω^*$ which separates stable and unstable ground states. Next, we study the existence and linear stability of periodic traveling wave solutions $u(x, t) = φ_c(x+ct)$. We present numerical illustration of the theoretically predicted threshold value of the speed $c$ which separates the stable and unstable waves.

Citation: Aslihan Demirkaya, Milena Stanislavova. Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 197-209. doi: 10.3934/dcdsb.2018097
References:
[1]

A. R. ChampneysP. J. McKenna and P. A. Zegeling, Solitary waves in nonlinear beam equations: stability, fission and fusion, Nonlinear Dynam, 21 (2000), 31-53. doi: 10.1023/A:1008302207311.

[2]

L. Chen, Orbital stability of solitary waves for the Klein-Gordon-Zakharov equations, Acta Math. Appl. Sinica, 15 (1999), 54-64. doi: 10.1007/BF02677396.

[3]

Y. Chen and P. J. McKenna, Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations, J. Differential Equations, 136 (1997), 325-355. doi: 10.1006/jdeq.1996.3155.

[4]

S. HakkaevM. Stanislavova and A. Stefanov, Orbital Stability for periodic standing waves of the Klein-Gordon-Zakharov and the Beam equation, ZAMP-Zeitschrift fuer Angewandte Mathematik und Physik,, 64 (2013), 265-282. doi: 10.1007/s00033-012-0228-6.

[5]

P. Karageorgis and P. J. McKenna, The existence of ground states for fourth-order wave equations, Nonlinear Anal, 73 (2010), 367-373. doi: 10.1016/j.na.2010.03.025.

[6]

S. Levandosky, Stability and instability of fourth order solitary waves, J. Dynamics and Differential Equations, 10 (1998), 151-188. doi: 10.1023/A:1022644629950.

[7]

P. J. McKenna and W. Walter, Traveling waves in a suspension bridge, SIAM J. Appl. Math., 50 (1990), 703-715. doi: 10.1137/0150041.

[8] J. Smoller, Nonlinear Ordinary Differential Equations, CRC Press, Boca Raton, FL, 1993.
[9]

M. Stanislavova and A. Stefanov, Linear stability analysis for traveling waves of second order in time PDE's, Nonlinearity, 25 (2012), 2625-2654. doi: 10.1088/0951-7715/25/9/2625.

[10]

M. Stanislavova and A. Stefanov, Spectral stability analysis for special solutions of second order in time PDE's: the higher dimensional case, Physica D: Nonlinear Phenomena, 262 (2013), 1-13. doi: 10.1016/j.physd.2013.06.014.

show all references

References:
[1]

A. R. ChampneysP. J. McKenna and P. A. Zegeling, Solitary waves in nonlinear beam equations: stability, fission and fusion, Nonlinear Dynam, 21 (2000), 31-53. doi: 10.1023/A:1008302207311.

[2]

L. Chen, Orbital stability of solitary waves for the Klein-Gordon-Zakharov equations, Acta Math. Appl. Sinica, 15 (1999), 54-64. doi: 10.1007/BF02677396.

[3]

Y. Chen and P. J. McKenna, Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations, J. Differential Equations, 136 (1997), 325-355. doi: 10.1006/jdeq.1996.3155.

[4]

S. HakkaevM. Stanislavova and A. Stefanov, Orbital Stability for periodic standing waves of the Klein-Gordon-Zakharov and the Beam equation, ZAMP-Zeitschrift fuer Angewandte Mathematik und Physik,, 64 (2013), 265-282. doi: 10.1007/s00033-012-0228-6.

[5]

P. Karageorgis and P. J. McKenna, The existence of ground states for fourth-order wave equations, Nonlinear Anal, 73 (2010), 367-373. doi: 10.1016/j.na.2010.03.025.

[6]

S. Levandosky, Stability and instability of fourth order solitary waves, J. Dynamics and Differential Equations, 10 (1998), 151-188. doi: 10.1023/A:1022644629950.

[7]

P. J. McKenna and W. Walter, Traveling waves in a suspension bridge, SIAM J. Appl. Math., 50 (1990), 703-715. doi: 10.1137/0150041.

[8] J. Smoller, Nonlinear Ordinary Differential Equations, CRC Press, Boca Raton, FL, 1993.
[9]

M. Stanislavova and A. Stefanov, Linear stability analysis for traveling waves of second order in time PDE's, Nonlinearity, 25 (2012), 2625-2654. doi: 10.1088/0951-7715/25/9/2625.

[10]

M. Stanislavova and A. Stefanov, Spectral stability analysis for special solutions of second order in time PDE's: the higher dimensional case, Physica D: Nonlinear Phenomena, 262 (2013), 1-13. doi: 10.1016/j.physd.2013.06.014.

Figure 1.  Two standing waves are shown for $p = 3$, $\omega = 0.5$ and $L = 20\pi$. The dashed line is the standing wave derived from a local minimizer of (8) and the solid line is derived from a global one.
Figure 2.  Existence of standing waves. $\varphi_{\omega}$ versus position when $p = 3$, (a) for different values of $\omega$ for $L = 50\pi$ (b) for different values of $L$ for $w = 0.8$.
Figure 3.  Orbital stability of standing wave solutions. $M(\omega)$ versus $\omega$ when $L = 50\pi$, (a) $p = 3$, the graph is concave up for $\omega\in (0.64, 1)$, (b) $p = 5$, the graph is concave up for $\omega\in(0.82, 1)$.
Figure 4.  (a) Snap-shots from the simulation of a periodic standing wave for $p = 5$, $\omega = -0.95$, $L = 30\pi$ when $t = 0$ (blue), $t = 5$ (red), $t = 22$ (green), $t = 28$ (pink), $t = 39$ (purple), $t = 44$ (black). (b) the space-time evolution of the periodic standing wave.
Figure 5.  Space-time evolution of the standing wave for $L = 30\pi$ (a) $p = 3$, $\omega = -0.55$ (b) $p = 5$, $\omega = -0.65$
Figure 6.  (a) Snap-shots from the simulation of a periodic traveling wave for $c = -1, 32$, $L = 30\pi$ when $t = 0$ (blue), $t = 1$ (red) and $t = 50$ (green) (b) the space-time evolution of the periodic traveling wave.
Figure 7.  Existence of traveling waves. $\phi_{c}$ versus position for different values of $c$ when $L = 100\pi$ and $p = 3$. $c = 0$ corresponds to the steady state solution.
Figure 8.  The first and the second minimum eigenvalues of $\mathcal{H}$ as L varies on $[5\pi, 31\pi]$ for $c = 0$, $c = 1$ and $c = 1.3$.
Figure 9.  $c^*$ versus $L$. In this figure, $L$ varies on $[5\pi, 200\pi]$. The numerical computations show us as $L$ increases $c^*$ decreases.
Figure 10.  (a) Snap-shots from the simulation of a periodic traveling wave for $c = -1, 38$, $L = 30\pi$ when $t = 0$ (blue), $t = 1$ (red) and $t = 50$ (green) (b) the space-time evolution of the periodic traveling wave.
Figure 11.  (a) Snap-shots from the simulation of a periodic standing wave for $p = 3$, $\omega = -0.85$, $L = 30\pi$ when $t = 0$ (blue), $t = 5$ (red), $t = 17$ (green), $t = 24$ (pink), $t = 37$ (purple), $t = 49$ (cyan), $t = 56$ (black). (b) the space-time evolution of the periodic standing wave.
Table 1.  $\omega^*$ values as $L$ varies.
$p$ $\omega^*$ $L$
$3$ $0.715\pm0.005$ $\pi$
$0.655\pm0.005$ $\in[2\pi, 50\pi]$
$0.6375\pm0.0025$ $100\pi$
$5$ $0.865\pm0.005$ $\pi$
$0.825\pm0.005$ $\in[2\pi, 50\pi]$
$0.8175\pm0.0025$ $100\pi$
$p$ $\omega^*$ $L$
$3$ $0.715\pm0.005$ $\pi$
$0.655\pm0.005$ $\in[2\pi, 50\pi]$
$0.6375\pm0.0025$ $100\pi$
$5$ $0.865\pm0.005$ $\pi$
$0.825\pm0.005$ $\in[2\pi, 50\pi]$
$0.8175\pm0.0025$ $100\pi$
[1]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[2]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[3]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[4]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[5]

Salvador Cruz-García, Catherine García-Reimbert. On the spectral stability of standing waves of the one-dimensional $M^5$-model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1079-1099. doi: 10.3934/dcdsb.2016.21.1079

[6]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[7]

Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure & Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010

[8]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[9]

Hua Chen, Ling-Jun Wang. A perturbation approach for the transverse spectral stability of small periodic traveling waves of the ZK equation. Kinetic & Related Models, 2012, 5 (2) : 261-281. doi: 10.3934/krm.2012.5.261

[10]

Judith R. Miller, Huihui Zeng. Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 895-925. doi: 10.3934/dcdsb.2011.16.895

[11]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[12]

Riccardo Adami, Diego Noja, Cecilia Ortoleva. Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: Neutral modes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5837-5879. doi: 10.3934/dcds.2016057

[13]

Margaret Beck. Stability of nonlinear waves: Pointwise estimates. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 191-211. doi: 10.3934/dcdss.2017010

[14]

François Genoud, Charles A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 137-186. doi: 10.3934/dcds.2008.21.137

[15]

Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of Klein-Gordon equations in a semiclassical regime. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2389-2401. doi: 10.3934/dcds.2013.33.2389

[16]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure & Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[17]

Judith R. Miller, Huihui Zeng. Multidimensional stability of planar traveling waves for an integrodifference model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 741-751. doi: 10.3934/dcdsb.2013.18.741

[18]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[19]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[20]

Grégory Faye. Multidimensional stability of planar traveling waves for the scalar nonlocal Allen-Cahn equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2473-2496. doi: 10.3934/dcds.2016.36.2473

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (33)
  • HTML views (483)
  • Cited by (0)

Other articles
by authors

[Back to Top]