August 2018, 23(6): 2265-2297. doi: 10.3934/dcdsb.2018096

Quantized vortex dynamics and interaction patterns in superconductivity based on the reduced dynamical law

1. 

School of Mathematics, Jilin University, Changchun 130012, China

2. 

Department of Mathematics, National University of Singapore, 119076, Singapore

Received  December 2016 Revised  October 2017 Published  March 2018

We study analytically and numerically stability and interaction patterns of quantized vortex lattices governed by the reduced dynamical lawa system of ordinary differential equations (ODEs) - in superconductivity. By deriving several non-autonomous first integrals of the ODEs, we obtain qualitatively dynamical properties of a cluster of quantized vortices, including global existence, finite time collision, equilibrium solution and invariant solution manifolds. For a vortex lattice with 3 vortices, we establish orbital stability when they have the same winding number and find different collision patterns when they have different winding numbers. In addition, under several special initial setups, we can obtain analytical solutions for the nonlinear ODEs.

Citation: Zhiguo Xu, Weizhu Bao, Shaoyun Shi. Quantized vortex dynamics and interaction patterns in superconductivity based on the reduced dynamical law. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2265-2297. doi: 10.3934/dcdsb.2018096
References:
[1]

W. Bao, Numerical methods for the nonlinear Schrödinger equation with nonzero far-field conditions, Methods Appl. Anal., 11 (2004), 367-387. doi: 10.4310/MAA.2004.v11.n3.a8.

[2]

W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Mod., 6 (2013), 1-135.

[3]

W. Bao and Q. Tang, Numerical study of quantized vortex interaction in the nonlinear Schroedinger equation on bounded domains, Multiscale Model. Simul., 12 (2014), 411-439. doi: 10.1137/130906489.

[4]

W. Bao and Q. Tang, Numerical study of quantized vortex interaction in the Ginzburg-Landau equation on bounded domains, Commun. Comput. Phys., 14 (2013), 819-850. doi: 10.4208/cicp.250112.061212a.

[5]

W. BaoR. Zeng and Y. Zhang, Quantized vortex stability and interaction in the nonlinear wave equation, Phys. D, 237 (2008), 2391-2410. doi: 10.1016/j.physd.2008.03.026.

[6]

P. BaumanC. ChenD. Phillips and P. Sternberg, Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems, European J. Appl. Math., 6 (1995), 115-126.

[7]

F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, Boston, 1994.

[8]

S. J. Chapman and G. Richardson, Motion of vortices in type Ⅱ superconductors, SIAM J. Appl. Math., 55 (1995), 1275-1296. doi: 10.1137/S0036139994263872.

[9]

J. E. Colliander and R. L. Jerrard, Vortex dynamics for the Ginzburg-Landau-Schrödinger equation, Internat. Math. Res. Notices, 7 (1998), 333-358.

[10]

Q. Du, Finite element methods for the time-dependent Ginzburg-Landau model of superconductivity, Comput. Math. Appl., 27 (1994), 119-133. doi: 10.1016/0898-1221(94)90091-4.

[11]

W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Phys. D, 77 (1994), 383-404. doi: 10.1016/0167-2789(94)90298-4.

[12]

R. Jerrard and H. M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rat. Mech., 142 (1998), 99-125. doi: 10.1007/s002050050085.

[13]

A. KleinD. JakschY. Zhang and W. Bao, Dynamics of vortices in weakly interacting BoseEinstein condensates, Phys. Rev. A, 76 (2007), 043602. doi: 10.1103/PhysRevA.76.043602.

[14]

S. Kowalevski, Sur la probleme de la rotation d'un corps solide autour d'un point fixe, Acta Math., 12 (1889), 177-232. doi: 10.1007/BF02592182.

[15] V. Kozlov, Symmetries, Topology and Resonances in Hamiltonian Mechanics, SpringerVerlag, Berlin, 1996.
[16]

O. Lange and B. Schroers, Unstable manifolds and Schrödinger dynamics of Ginzburg-Landau vortices, Nonlinearity, 15 (2002), 1471-1488. doi: 10.1088/0951-7715/15/5/307.

[17]

F. Lin, Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math., 49 (1996), 323-360. doi: 10.1002/(SICI)1097-0312(199604)49:4<323::AID-CPA1>3.0.CO;2-E.

[18]

F. Lin, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds, Comm. Pure Appl. Math., 51 (1998), 385-441. doi: 10.1002/(SICI)1097-0312(199804)51:4<385::AID-CPA3>3.0.CO;2-5.

[19]

F. Lin and J. Xin, On the dynamical law of the Ginzburg-Landau vortices on the plane, Comm. Pure Appl. Math., 52 (1999), 1189-1212. doi: 10.1002/(SICI)1097-0312(199910)52:10<1189::AID-CPA1>3.0.CO;2-T.

[20]

P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal., 130 (1995), 334-344. doi: 10.1006/jfan.1995.1073.

[21]

P. K. Newton and G. Chamoun, Vortex lattice theory: A particle interaction perspective, SIAM Rev., 51 (2009), 501-542. doi: 10.1137/07068597X.

[22]

J. Neu, Vortices in complex scalar fields, Phys. D, 43 (1990), 385-406. doi: 10.1016/0167-2789(90)90143-D.

[23]

J. Neu, Vortex dynamics of the nonlinear wave equation, Phys. D, 43 (1990), 407-420. doi: 10.1016/0167-2789(90)90144-E.

[24]

Y. Ovchinnikov and I. Sigal, Long-time behavior of Ginzburg-Landau vortices, Nonlinearity, 11 (1998), 1295-1309. doi: 10.1088/0951-7715/11/5/007.

[25]

Y. Ovchinnikov and I. Sigal, Asymptotic behavior of solutions of Ginzburg-Landau and relate equations, Rev. Math. Phys., 12 (2000), 287-299. doi: 10.1142/S0129055X00000101.

[26] L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Clarendon Press, Oxford, 2003.
[27]

H. Poincaré, Sur l'intégrations des équations différentielles du premier order et du premier degré Ⅰ and Ⅱ, Rend. Circ. Mat. Palermo, 5 (1891), 161-191; 11 (1897), 193-239.

[28]

E. Sandier, The symmetry of minimizing harmonic maps from a two-dimernsional domain to the sphere, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 549-559. doi: 10.1016/S0294-1449(16)30204-9.

[29]

W. Shen and X. Zhao, Convergence in almost periodic cooperative systems with a first integral, Proc. Amer. Math. Soc., 133 (2005), 203-212. doi: 10.1090/S0002-9939-04-07556-2.

[30]

Y. ZhangW. Bao and Q. Du, The dynamics and interaction of quantized vortices in the Ginzburg-Landau-Schrödinger equation, SIAM J. Appl. Math., 67 (2007), 1740-1775. doi: 10.1137/060671528.

[31]

Y. ZhangW. Bao and Q. Du, Numerical simulation of vortex dynamics in Ginzburg-Landau-Schrödinger equation, European J. Appl. Math., 18 (2007), 607-630.

show all references

References:
[1]

W. Bao, Numerical methods for the nonlinear Schrödinger equation with nonzero far-field conditions, Methods Appl. Anal., 11 (2004), 367-387. doi: 10.4310/MAA.2004.v11.n3.a8.

[2]

W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Mod., 6 (2013), 1-135.

[3]

W. Bao and Q. Tang, Numerical study of quantized vortex interaction in the nonlinear Schroedinger equation on bounded domains, Multiscale Model. Simul., 12 (2014), 411-439. doi: 10.1137/130906489.

[4]

W. Bao and Q. Tang, Numerical study of quantized vortex interaction in the Ginzburg-Landau equation on bounded domains, Commun. Comput. Phys., 14 (2013), 819-850. doi: 10.4208/cicp.250112.061212a.

[5]

W. BaoR. Zeng and Y. Zhang, Quantized vortex stability and interaction in the nonlinear wave equation, Phys. D, 237 (2008), 2391-2410. doi: 10.1016/j.physd.2008.03.026.

[6]

P. BaumanC. ChenD. Phillips and P. Sternberg, Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems, European J. Appl. Math., 6 (1995), 115-126.

[7]

F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, Boston, 1994.

[8]

S. J. Chapman and G. Richardson, Motion of vortices in type Ⅱ superconductors, SIAM J. Appl. Math., 55 (1995), 1275-1296. doi: 10.1137/S0036139994263872.

[9]

J. E. Colliander and R. L. Jerrard, Vortex dynamics for the Ginzburg-Landau-Schrödinger equation, Internat. Math. Res. Notices, 7 (1998), 333-358.

[10]

Q. Du, Finite element methods for the time-dependent Ginzburg-Landau model of superconductivity, Comput. Math. Appl., 27 (1994), 119-133. doi: 10.1016/0898-1221(94)90091-4.

[11]

W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Phys. D, 77 (1994), 383-404. doi: 10.1016/0167-2789(94)90298-4.

[12]

R. Jerrard and H. M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rat. Mech., 142 (1998), 99-125. doi: 10.1007/s002050050085.

[13]

A. KleinD. JakschY. Zhang and W. Bao, Dynamics of vortices in weakly interacting BoseEinstein condensates, Phys. Rev. A, 76 (2007), 043602. doi: 10.1103/PhysRevA.76.043602.

[14]

S. Kowalevski, Sur la probleme de la rotation d'un corps solide autour d'un point fixe, Acta Math., 12 (1889), 177-232. doi: 10.1007/BF02592182.

[15] V. Kozlov, Symmetries, Topology and Resonances in Hamiltonian Mechanics, SpringerVerlag, Berlin, 1996.
[16]

O. Lange and B. Schroers, Unstable manifolds and Schrödinger dynamics of Ginzburg-Landau vortices, Nonlinearity, 15 (2002), 1471-1488. doi: 10.1088/0951-7715/15/5/307.

[17]

F. Lin, Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math., 49 (1996), 323-360. doi: 10.1002/(SICI)1097-0312(199604)49:4<323::AID-CPA1>3.0.CO;2-E.

[18]

F. Lin, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds, Comm. Pure Appl. Math., 51 (1998), 385-441. doi: 10.1002/(SICI)1097-0312(199804)51:4<385::AID-CPA3>3.0.CO;2-5.

[19]

F. Lin and J. Xin, On the dynamical law of the Ginzburg-Landau vortices on the plane, Comm. Pure Appl. Math., 52 (1999), 1189-1212. doi: 10.1002/(SICI)1097-0312(199910)52:10<1189::AID-CPA1>3.0.CO;2-T.

[20]

P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal., 130 (1995), 334-344. doi: 10.1006/jfan.1995.1073.

[21]

P. K. Newton and G. Chamoun, Vortex lattice theory: A particle interaction perspective, SIAM Rev., 51 (2009), 501-542. doi: 10.1137/07068597X.

[22]

J. Neu, Vortices in complex scalar fields, Phys. D, 43 (1990), 385-406. doi: 10.1016/0167-2789(90)90143-D.

[23]

J. Neu, Vortex dynamics of the nonlinear wave equation, Phys. D, 43 (1990), 407-420. doi: 10.1016/0167-2789(90)90144-E.

[24]

Y. Ovchinnikov and I. Sigal, Long-time behavior of Ginzburg-Landau vortices, Nonlinearity, 11 (1998), 1295-1309. doi: 10.1088/0951-7715/11/5/007.

[25]

Y. Ovchinnikov and I. Sigal, Asymptotic behavior of solutions of Ginzburg-Landau and relate equations, Rev. Math. Phys., 12 (2000), 287-299. doi: 10.1142/S0129055X00000101.

[26] L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Clarendon Press, Oxford, 2003.
[27]

H. Poincaré, Sur l'intégrations des équations différentielles du premier order et du premier degré Ⅰ and Ⅱ, Rend. Circ. Mat. Palermo, 5 (1891), 161-191; 11 (1897), 193-239.

[28]

E. Sandier, The symmetry of minimizing harmonic maps from a two-dimernsional domain to the sphere, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 549-559. doi: 10.1016/S0294-1449(16)30204-9.

[29]

W. Shen and X. Zhao, Convergence in almost periodic cooperative systems with a first integral, Proc. Amer. Math. Soc., 133 (2005), 203-212. doi: 10.1090/S0002-9939-04-07556-2.

[30]

Y. ZhangW. Bao and Q. Du, The dynamics and interaction of quantized vortices in the Ginzburg-Landau-Schrödinger equation, SIAM J. Appl. Math., 67 (2007), 1740-1775. doi: 10.1137/060671528.

[31]

Y. ZhangW. Bao and Q. Du, Numerical simulation of vortex dynamics in Ginzburg-Landau-Schrödinger equation, European J. Appl. Math., 18 (2007), 607-630.

Figure 2.1.  Illustrations of a finite time collision of a vortex dipole in a vortex cluster with 3 vortices (a) and a (finite time) collision cluster with 3 vortices in a vortex cluster with 5 vortices (b). Here and in the following figures, '+' and '$-$' denote the initial vortex centers with winding numbers $m = +1$ and $m = -1$, respectively; and 'o' denotes the finite time collision position
Figure 3.1.  Interaction of $3$ vortices with the same winding number (a and b) and opposite winding numbers (c)
Figure 4.1.  Time evolution of $\rho_1(t)$ (left) and $\rho_2(t)$ (right) of (4.12) with $\rho_1^0 = 1$ and $\rho_2^0 = 4$ for different $n\ge2$
Figure 4.2.  Time evolution of $\rho_1(t)$ (left) and $\rho_2(t)$ (right) of (4.20) with $\rho_1^0 = 1$ and $\rho_2^0 = 4$ for different $n\ge2$
Figure 4.3.  Time evolution of $\rho_1(t)$ (left) and $\rho_2(t)$ (right) of (4.26) with $\rho_1^0 = 1$ and $\rho_2^0 = 4$ for different $n\ge2$
Figure 4.4.  Time evolution of $\rho_1(t)$ (left) and $\rho_2(t)$ (right) of (4.32) with $\rho_1^0 = 1$ and $\rho_2^0 = 4$ for different $n\ge2$
[1]

Pedro J. Torres. Non-collision periodic solutions of forced dynamical systems with weak singularities. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 693-698. doi: 10.3934/dcds.2004.11.693

[2]

Alexandre N. Carvalho, José A. Langa, James C. Robinson. Non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 703-747. doi: 10.3934/dcdsb.2015.20.703

[3]

Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211

[4]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[5]

Michael Dellnitz, Christian Horenkamp. The efficient approximation of coherent pairs in non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3029-3042. doi: 10.3934/dcds.2012.32.3029

[6]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[7]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[8]

Mahesh G. Nerurkar. Spectral and stability questions concerning evolution of non-autonomous linear systems. Conference Publications, 2001, 2001 (Special) : 270-275. doi: 10.3934/proc.2001.2001.270

[9]

Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517

[10]

Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic & Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441

[11]

Sergey V. Bolotin. Shadowing chains of collision orbits. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 235-260. doi: 10.3934/dcds.2006.14.235

[12]

Noriaki Yamazaki. Global attractors for non-autonomous multivalued dynamical systems associated with double obstacle problems. Conference Publications, 2003, 2003 (Special) : 935-944. doi: 10.3934/proc.2003.2003.935

[13]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[14]

Bixiang Wang. Multivalued non-autonomous random dynamical systems for wave equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2011-2051. doi: 10.3934/dcdsb.2017119

[15]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[16]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[17]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[18]

David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499

[19]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2018194

[20]

Cung The Anh, Le Van Hieu, Nguyen Thieu Huy. Inertial manifolds for a class of non-autonomous semilinear parabolic equations with finite delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 483-503. doi: 10.3934/dcds.2013.33.483

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (20)
  • HTML views (273)
  • Cited by (0)

Other articles
by authors

[Back to Top]