January 2019, 24(1): 351-361. doi: 10.3934/dcdsb.2018086

A locking free Reissner-Mindlin element with weak Galerkin rotations

1. 

Department of Mathematics, Jilin University, Changchun, China

2. 

Computer Science and Mathematics Division Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

3. 

Department of Mathematics, University of Arkansas at Little Rock, Little Rock, AR 72204, USA

* Corresponding author: Lin Mu

Received  October 2016 Revised  October 2017 Published  March 2018

Fund Project: The research of second author was supported in part by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under award number ERKJE45; and by the Laboratory Directed Research and Development program at the Oak Ridge National Laboratory, which is operated by UT-Battelle, LLC., for the U.S. Department of Energy under Contract DE-AC05-00OR22725. This research of third author was supported in part by National Science Foundation Grant DMS-1620016

A locking free finite element method is developed for the Reissner-Mindlin equations in their primary form. In this method, the transverse displacement is approximated by continuous piecewise polynomials of degree $k+1$ and the rotation is approximated by weak Galerkin elements of degree $k$ for $k≥1$. A uniform convergence in thickness of the plate is established for this finite element approximation. The numerical examples demonstrate locking free of the method.

Citation: Ruishu Wang, Lin Mu, Xiu Ye. A locking free Reissner-Mindlin element with weak Galerkin rotations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 351-361. doi: 10.3934/dcdsb.2018086
References:
[1]

D. ArnoldF. Brezzi and D. Marini, A family of discontinuous Galerkin finite elements for the Reissner-Mindlin plate, J. Sci. Comput., 22 (2005), 25-45. doi: 10.1007/s10915-004-4134-8.

[2]

D. ArnoldF. BrezziR. Falk and D. Marini, Locking-free Reissner-Mindlin elements without reduced integration, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3660-3671. doi: 10.1016/j.cma.2006.10.023.

[3]

D. Arnold and R. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal., 26 (1989), 1276-1290. doi: 10.1137/0726074.

[4]

D. N. Arnold and X. Liu, Interior estimates for a low order finite element method for the Reissner-Mindlin plate model, Adv. in Comp. Math., 7 (1997), 337-360. doi: 10.1023/A:1018907205385.

[5]

S. Brenner, Korn's inequalities for piecewise $H^1$ vector fields, Math. Comput., 73 (2004), 1067-1087.

[6]

F. Brezzi and M. Fortin, Numerical approximation of Mindlin-Reissner plates, Math. Comp., 47 (1986), 151-158. doi: 10.1090/S0025-5718-1986-0842127-7.

[7]

F. BrezziK. Bathe and M. Fortin, Mixed interpolated elements for Reissner-Mindlin plates, Int. J. Numer. Methods Eng., 28 (1989), 1787-1801. doi: 10.1002/nme.1620280806.

[8]

G. BrezziM. Fortin and R. Stenberg, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Mathematical Models and Methods in Applied Sciences, 1 (1991), 125-151. doi: 10.1142/S0218202591000083.

[9]

D. Chapelle and R. Stenberg, An optimal low-order locking-free finite element method for Reissner-Mindlin plates, Mathematical Models and Methods in Applied Sciences, 8 (1998), 407-430. doi: 10.1142/S0218202598000172.

[10]

R. Duran and E. Liberman, On mixed finite element methods for the Reissner-Mindlin plate model, Math. Comp., 58 (1992), 561-573. doi: 10.1090/S0025-5718-1992-1106965-0.

[11]

R. Falk and T. Tu, Locking-free finite elements for the Reissner-Mindlin plate, Math. Comp., 69 (2000), 911-928.

[12]

P. HansboD. Heintz and M. Larson, A finite element method with discontinuous rotations for the Mindlin-Reissner plate model, Comput. Methods Appl. Mech. Engrg., 200 (2011), 638-648. doi: 10.1016/j.cma.2010.09.009.

[13]

C. Lovadina and D. Marini, Nonconforming locking-free finite elements for Reissner-Mindlin plates, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3448-3460. doi: 10.1016/j.cma.2005.06.025.

[14]

L. MuJ. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, Journal of Computational and Applied Mathematics, 285 (2015), 45-58. doi: 10.1016/j.cam.2015.02.001.

[15]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element method for second-order elliptic problems on polytopal meshes, International Journal of Numerical Analysis and Modeling, 12 (2015), 31-53.

[16]

R. Pierre, Convergence Properties and Numerical Approximation of the Solution of the Mindlin Plate Bending Problem, Math Comp., 51 (1988), 15-25. doi: 10.1090/S0025-5718-1988-0942141-9.

[17]

J. Wang and X. Ye, A superconvergent finite element scheme for the reissner-mindlin plate by projection methods, International Journal of Numeerical Analysis and Modeling, 1 (2004), 99-110.

[18]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comp. and Appl. Math, 241 (2013), 103-115. doi: 10.1016/j.cam.2012.10.003.

[19]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., Math. Comp., 83 (2014), 2101-2126. doi: 10.1090/S0025-5718-2014-02852-4.

[20]

X. Ye, Stabilized finite element approximations for the Reissner-Mindlin plate, Advances in Computational Mathematics, 13 (2000), 375-386. doi: 10.1023/A:1016693613626.

[21]

X. Ye, A Rectangular Element for the Reissner-Mindlin Plate, Numer. Method for PDE, 16 (2000), 184-193. doi: 10.1002/(SICI)1098-2426(200003)16:2<184::AID-NUM3>3.0.CO;2-B.

show all references

References:
[1]

D. ArnoldF. Brezzi and D. Marini, A family of discontinuous Galerkin finite elements for the Reissner-Mindlin plate, J. Sci. Comput., 22 (2005), 25-45. doi: 10.1007/s10915-004-4134-8.

[2]

D. ArnoldF. BrezziR. Falk and D. Marini, Locking-free Reissner-Mindlin elements without reduced integration, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3660-3671. doi: 10.1016/j.cma.2006.10.023.

[3]

D. Arnold and R. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal., 26 (1989), 1276-1290. doi: 10.1137/0726074.

[4]

D. N. Arnold and X. Liu, Interior estimates for a low order finite element method for the Reissner-Mindlin plate model, Adv. in Comp. Math., 7 (1997), 337-360. doi: 10.1023/A:1018907205385.

[5]

S. Brenner, Korn's inequalities for piecewise $H^1$ vector fields, Math. Comput., 73 (2004), 1067-1087.

[6]

F. Brezzi and M. Fortin, Numerical approximation of Mindlin-Reissner plates, Math. Comp., 47 (1986), 151-158. doi: 10.1090/S0025-5718-1986-0842127-7.

[7]

F. BrezziK. Bathe and M. Fortin, Mixed interpolated elements for Reissner-Mindlin plates, Int. J. Numer. Methods Eng., 28 (1989), 1787-1801. doi: 10.1002/nme.1620280806.

[8]

G. BrezziM. Fortin and R. Stenberg, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Mathematical Models and Methods in Applied Sciences, 1 (1991), 125-151. doi: 10.1142/S0218202591000083.

[9]

D. Chapelle and R. Stenberg, An optimal low-order locking-free finite element method for Reissner-Mindlin plates, Mathematical Models and Methods in Applied Sciences, 8 (1998), 407-430. doi: 10.1142/S0218202598000172.

[10]

R. Duran and E. Liberman, On mixed finite element methods for the Reissner-Mindlin plate model, Math. Comp., 58 (1992), 561-573. doi: 10.1090/S0025-5718-1992-1106965-0.

[11]

R. Falk and T. Tu, Locking-free finite elements for the Reissner-Mindlin plate, Math. Comp., 69 (2000), 911-928.

[12]

P. HansboD. Heintz and M. Larson, A finite element method with discontinuous rotations for the Mindlin-Reissner plate model, Comput. Methods Appl. Mech. Engrg., 200 (2011), 638-648. doi: 10.1016/j.cma.2010.09.009.

[13]

C. Lovadina and D. Marini, Nonconforming locking-free finite elements for Reissner-Mindlin plates, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3448-3460. doi: 10.1016/j.cma.2005.06.025.

[14]

L. MuJ. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, Journal of Computational and Applied Mathematics, 285 (2015), 45-58. doi: 10.1016/j.cam.2015.02.001.

[15]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element method for second-order elliptic problems on polytopal meshes, International Journal of Numerical Analysis and Modeling, 12 (2015), 31-53.

[16]

R. Pierre, Convergence Properties and Numerical Approximation of the Solution of the Mindlin Plate Bending Problem, Math Comp., 51 (1988), 15-25. doi: 10.1090/S0025-5718-1988-0942141-9.

[17]

J. Wang and X. Ye, A superconvergent finite element scheme for the reissner-mindlin plate by projection methods, International Journal of Numeerical Analysis and Modeling, 1 (2004), 99-110.

[18]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comp. and Appl. Math, 241 (2013), 103-115. doi: 10.1016/j.cam.2012.10.003.

[19]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., Math. Comp., 83 (2014), 2101-2126. doi: 10.1090/S0025-5718-2014-02852-4.

[20]

X. Ye, Stabilized finite element approximations for the Reissner-Mindlin plate, Advances in Computational Mathematics, 13 (2000), 375-386. doi: 10.1023/A:1016693613626.

[21]

X. Ye, A Rectangular Element for the Reissner-Mindlin Plate, Numer. Method for PDE, 16 (2000), 184-193. doi: 10.1002/(SICI)1098-2426(200003)16:2<184::AID-NUM3>3.0.CO;2-B.

Table 1.  Example 1. Error profile and convergence rate on triangular mesh.
h $\frac{\|{\boldsymbol{\rm{e}}}_0\|}{\|{\boldsymbol{\rm{Q}}}_0\mathit{\boldsymbol{\theta}}\|}$ Rate $\frac{|||{\boldsymbol{\rm{e}}}_h|||_{\theta}}{|||{\boldsymbol{\rm{Q}}}_h\mathit{\boldsymbol{\theta}}|||}$ Rate $\frac{\| \xi_h\|}{\|w_I\|}$ Rate $\frac{||| \xi_h|||_w}{||| w_I|||_w}$ Rate
t=1
1/4 2.2928e-1 8.2826e-1 1.1156e-1 9.4025e-2
1/8 7.2951e-2 1.65 6.1481e-1 0.43 1.4546e-2 2.94 1.7212e-2 2.45
1/16 1.8952e-2 1.94 3.6061e-1 0.77 1.8584e-3 2.97 2.4738e-3 2.80
1/32 4.7756e-3 1.99 1.8925e-1 0.93 2.4951e-4 2.90 3.3612e-4 2.88
1/64 1.1961e-3 2.00 9.5844e-2 0.98 3.8498e-5 2.70 4.8047e-5 2.81
t = 1e − 3
1/4 2.3633e-1 2.3639e-1 2.7175e-1 2.9153e-1
1/8 6.8597e-2 1.78 6.8675e-2 1.78 8.7506e-2 1.63 1.1448e-1 1.35
1/16 1.9470e-2 1.82 1.9542e-2 1.81 2.4404e-2 1.84 3.4550e-2 1.73
1/32 5.0660e-3 1.94 5.1359e-3 1.93 6.2578e-3 1.96 9.0799e-3 1.93
1/64 1.2169e-3 2.06 1.2876e-3 2.00 1.5154e-3 2.05 2.2184e-3 2.03
t = 1e − 6
1/4 2.3636e-1 2.3636e-1 2.7183e-1 2.9161e-1
1/8 6.8703e-2 1.78 6.8703e-2 1.78 8.7716e-2 1.63 1.1467e-1 1.35
1/16 1.9610e-2 1.81 1.9610e-2 1.81 2.4634e-2 1.83 3.4772e-2 1.72
1/32 5.0329e-3 1.96 5.0329e-3 1.96 4.4698e-3 2.46 7.7775e-3 2.16
1/64 1.2582e-3 2.00 1.2582e-3 2.00 1.1175e-3 2.00 1.9444e-3 2.00
h $\frac{\|{\boldsymbol{\rm{e}}}_0\|}{\|{\boldsymbol{\rm{Q}}}_0\mathit{\boldsymbol{\theta}}\|}$ Rate $\frac{|||{\boldsymbol{\rm{e}}}_h|||_{\theta}}{|||{\boldsymbol{\rm{Q}}}_h\mathit{\boldsymbol{\theta}}|||}$ Rate $\frac{\| \xi_h\|}{\|w_I\|}$ Rate $\frac{||| \xi_h|||_w}{||| w_I|||_w}$ Rate
t=1
1/4 2.2928e-1 8.2826e-1 1.1156e-1 9.4025e-2
1/8 7.2951e-2 1.65 6.1481e-1 0.43 1.4546e-2 2.94 1.7212e-2 2.45
1/16 1.8952e-2 1.94 3.6061e-1 0.77 1.8584e-3 2.97 2.4738e-3 2.80
1/32 4.7756e-3 1.99 1.8925e-1 0.93 2.4951e-4 2.90 3.3612e-4 2.88
1/64 1.1961e-3 2.00 9.5844e-2 0.98 3.8498e-5 2.70 4.8047e-5 2.81
t = 1e − 3
1/4 2.3633e-1 2.3639e-1 2.7175e-1 2.9153e-1
1/8 6.8597e-2 1.78 6.8675e-2 1.78 8.7506e-2 1.63 1.1448e-1 1.35
1/16 1.9470e-2 1.82 1.9542e-2 1.81 2.4404e-2 1.84 3.4550e-2 1.73
1/32 5.0660e-3 1.94 5.1359e-3 1.93 6.2578e-3 1.96 9.0799e-3 1.93
1/64 1.2169e-3 2.06 1.2876e-3 2.00 1.5154e-3 2.05 2.2184e-3 2.03
t = 1e − 6
1/4 2.3636e-1 2.3636e-1 2.7183e-1 2.9161e-1
1/8 6.8703e-2 1.78 6.8703e-2 1.78 8.7716e-2 1.63 1.1467e-1 1.35
1/16 1.9610e-2 1.81 1.9610e-2 1.81 2.4634e-2 1.83 3.4772e-2 1.72
1/32 5.0329e-3 1.96 5.0329e-3 1.96 4.4698e-3 2.46 7.7775e-3 2.16
1/64 1.2582e-3 2.00 1.2582e-3 2.00 1.1175e-3 2.00 1.9444e-3 2.00
Table 2.  Example 2. Error profile and convergence rate on triangular mesh.
$h$ $\frac{\|{\boldsymbol{\rm{e}}}_0\|}{\|{\boldsymbol{\rm{Q}}}_0\mathit{\boldsymbol{\theta}}\|}$ Rate $\frac{|||{\boldsymbol{\rm{e}}}_h|||_{\theta}}{|||{\boldsymbol{\rm{Q}}}_h\mathit{\boldsymbol{\theta}}|||}$ Rate $\frac{\| \xi_h\|}{\|w_I\|}$ Rate $\frac{||| \xi_h|||_w}{||| w_I|||_w}$ Rate
$t=1$
1/4 7.1054e-2 4.3252e-1 1.3468e-3 1.9340e-3
1/81.7700e-22.012.2528e-10.943.0173e-42.164.7669e-42.02
1/164.4178e-32.001.1386e-10.987.3026e-52.051.1882e-42.00
1/321.1038e-32.005.7085e-21.001.8108e-52.012.9695e-52.00
1/642.7591e-42.002.8562e-21.004.5181e-62.007.4241e-62.00
$t=1e-3$
1/47.8909e-27.8920e-21.5185e-22.1876e-2
1/81.9680e-22.001.9692e-22.003.4940e-32.125.3275e-32.04
1/164.9063e-32.004.9182e-32.008.6948e-42.011.3334e-32.00
1/321.2254e-32.001.2373e-31.992.1650e-42.013.3216e-42.01
1/643.0652e-42.003.1821e-41.965.2591e-52.048.0763e-52.04
$t=1e-6$
1/47.8904e-27.8904e-21.5196e-22.1889e-2
1/81.9658e-22.011.9658e-22.013.5363e-32.105.3726e-32.03
1/164.8250e-32.034.8250e-32.031.0325e-31.781.5119e-31.83
1/321.2063e-32.001.2063e-32.002.5812e-42.003.7798e-42.00
1/643.0156e-42.003.0156e-42.006.4531e-52.009.4494e-52.00
$h$ $\frac{\|{\boldsymbol{\rm{e}}}_0\|}{\|{\boldsymbol{\rm{Q}}}_0\mathit{\boldsymbol{\theta}}\|}$ Rate $\frac{|||{\boldsymbol{\rm{e}}}_h|||_{\theta}}{|||{\boldsymbol{\rm{Q}}}_h\mathit{\boldsymbol{\theta}}|||}$ Rate $\frac{\| \xi_h\|}{\|w_I\|}$ Rate $\frac{||| \xi_h|||_w}{||| w_I|||_w}$ Rate
$t=1$
1/4 7.1054e-2 4.3252e-1 1.3468e-3 1.9340e-3
1/81.7700e-22.012.2528e-10.943.0173e-42.164.7669e-42.02
1/164.4178e-32.001.1386e-10.987.3026e-52.051.1882e-42.00
1/321.1038e-32.005.7085e-21.001.8108e-52.012.9695e-52.00
1/642.7591e-42.002.8562e-21.004.5181e-62.007.4241e-62.00
$t=1e-3$
1/47.8909e-27.8920e-21.5185e-22.1876e-2
1/81.9680e-22.001.9692e-22.003.4940e-32.125.3275e-32.04
1/164.9063e-32.004.9182e-32.008.6948e-42.011.3334e-32.00
1/321.2254e-32.001.2373e-31.992.1650e-42.013.3216e-42.01
1/643.0652e-42.003.1821e-41.965.2591e-52.048.0763e-52.04
$t=1e-6$
1/47.8904e-27.8904e-21.5196e-22.1889e-2
1/81.9658e-22.011.9658e-22.013.5363e-32.105.3726e-32.03
1/164.8250e-32.034.8250e-32.031.0325e-31.781.5119e-31.83
1/321.2063e-32.001.2063e-32.002.5812e-42.003.7798e-42.00
1/643.0156e-42.003.0156e-42.006.4531e-52.009.4494e-52.00
Table 3.  Example 3. Error profile and convergence rate on triangular mesh.
$h$ $\frac{\|{\boldsymbol{\rm{e}}}_0\|}{\|{\boldsymbol{\rm{Q}}}_0\mathit{\boldsymbol{\theta}}\|}$Rate$\frac{|||{\boldsymbol{\rm{e}}}_h|||_{\theta}}{|||{\boldsymbol{\rm{Q}}}_h\mathit{\boldsymbol{\theta}}|||}$Rate $\frac{\| \xi_h\|}{\|w_I\|}$Rate$\frac{||| \xi_h|||_w}{||| w_I|||_w}$Rate
$t=1$
1/42.8817e-18.7886e-13.4967e-22.8229e-2
1/86.4481e-22.165.8311e-10.594.9549e-32.824.7686e-32.57
1/161.5738e-22.033.2520e-10.847.6558e-42.697.2651e-42.71
1/323.9112e-32.011.6784e-10.951.4638e-42.391.1930e-42.60
1/649.7633e-42.008.4614e-20.993.3163e-52.142.3538e-52.34
$t=1e-3$
1/41.9791e-11.9802e-12.8790e-12.8340e-01
1/85.5770e-21.835.5851e-21.831.0222e-11.491.0240e-011.47
1/161.5321e-21.861.5393e-21.862.8291e-21.852.8723e-021.83
1/323.8890e-31.983.9578e-31.967.2000e-31.977.3429e-031.97
1/649.1919e-42.089.8893e-42.001.7371e-32.051.7727e-032.05
$t=1e-6$
1/41.9793e-11.9793e-12.8800e-12.8350e-01
1/85.5887e-21.825.5887e-21.821.0241e-11.491.0258e-011.47
1/161.5435e-21.861.5435e-21.862.8442e-21.852.8873e-021.83
1/323.3377e-32.213.3377e-32.214.4595e-32.674.9441e-032.55
1/648.3442e-42.008.3442e-42.001.1149e-32.001.2360e-032.00
$h$ $\frac{\|{\boldsymbol{\rm{e}}}_0\|}{\|{\boldsymbol{\rm{Q}}}_0\mathit{\boldsymbol{\theta}}\|}$Rate$\frac{|||{\boldsymbol{\rm{e}}}_h|||_{\theta}}{|||{\boldsymbol{\rm{Q}}}_h\mathit{\boldsymbol{\theta}}|||}$Rate $\frac{\| \xi_h\|}{\|w_I\|}$Rate$\frac{||| \xi_h|||_w}{||| w_I|||_w}$Rate
$t=1$
1/42.8817e-18.7886e-13.4967e-22.8229e-2
1/86.4481e-22.165.8311e-10.594.9549e-32.824.7686e-32.57
1/161.5738e-22.033.2520e-10.847.6558e-42.697.2651e-42.71
1/323.9112e-32.011.6784e-10.951.4638e-42.391.1930e-42.60
1/649.7633e-42.008.4614e-20.993.3163e-52.142.3538e-52.34
$t=1e-3$
1/41.9791e-11.9802e-12.8790e-12.8340e-01
1/85.5770e-21.835.5851e-21.831.0222e-11.491.0240e-011.47
1/161.5321e-21.861.5393e-21.862.8291e-21.852.8723e-021.83
1/323.8890e-31.983.9578e-31.967.2000e-31.977.3429e-031.97
1/649.1919e-42.089.8893e-42.001.7371e-32.051.7727e-032.05
$t=1e-6$
1/41.9793e-11.9793e-12.8800e-12.8350e-01
1/85.5887e-21.825.5887e-21.821.0241e-11.491.0258e-011.47
1/161.5435e-21.861.5435e-21.862.8442e-21.852.8873e-021.83
1/323.3377e-32.213.3377e-32.214.4595e-32.674.9441e-032.55
1/648.3442e-42.008.3442e-42.001.1149e-32.001.2360e-032.00
[1]

Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034

[2]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[3]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[4]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[5]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[6]

Qun Lin, Hehu Xie. Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods. Inverse Problems & Imaging, 2013, 7 (3) : 795-811. doi: 10.3934/ipi.2013.7.795

[7]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[8]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[9]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[10]

A. Naga, Z. Zhang. The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 769-798. doi: 10.3934/dcdsb.2005.5.769

[11]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[12]

Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677

[13]

Mohammad Asadzadeh, Anders Brahme, Jiping Xin. Galerkin methods for primary ion transport in inhomogeneous media. Kinetic & Related Models, 2010, 3 (3) : 373-394. doi: 10.3934/krm.2010.3.373

[14]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[15]

Kersten Schmidt, Ralf Hiptmair. Asymptotic boundary element methods for thin conducting sheets. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 619-647. doi: 10.3934/dcdss.2015.8.619

[16]

Gonzalo Galiano, Julián Velasco. Finite element approximation of a population spatial adaptation model. Mathematical Biosciences & Engineering, 2013, 10 (3) : 637-647. doi: 10.3934/mbe.2013.10.637

[17]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[18]

Eduardo Casas, Mariano Mateos, Arnd Rösch. Finite element approximation of sparse parabolic control problems. Mathematical Control & Related Fields, 2017, 7 (3) : 393-417. doi: 10.3934/mcrf.2017014

[19]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[20]

Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks & Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1

2017 Impact Factor: 0.972

Article outline

Figures and Tables

[Back to Top]