• Previous Article
    An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems
  • DCDS-B Home
  • This Issue
  • Next Article
    Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE
June 2018, 23(4): 1523-1533. doi: 10.3934/dcdsb.2018056

Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise

1. 

College of Science, National University of Defense Technology, Changsha, 410073, China

2. 

School of Mathematics, South China University of Technology, Guangzhou, 510640, China

* Corresponding author: Jianhua Huang

Received  April 2017 Revised  August 2017 Published  February 2018

Fund Project: The authors are supported by NSF of China(11371367,11771449)

We present the time-spatial regularity of the nonlocal stochastic convolution for Caputo-type time fractional nonlocal Ornstein-Ulenbeck equations, and establish the existence and uniqueness of mild solutions for time fractional and space nonlocal stochastic Boussinesq equations driven by Gaussian white noise.

Citation: Tianlong Shen, Jianhua Huang, Caibin Zeng. Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1523-1533. doi: 10.3934/dcdsb.2018056
References:
[1]

C. BardosP. PenelU. Frisch and P. Sulem, Modifed dissipativity for a nonlinear evolution equation arising in turbulence, Arch. Ration. Mech. Anal., 71 (1979), 237-256. doi: 10.1007/BF00280598.

[2]

P. M. de Carvalho-Neto and G. Planas, Mild solutions to the time fractional Navier-stokes equations in $\mathbb{R}^N$, J. Differential Equations, 259 (2015), 2948-2980. doi: 10.1016/j.jde.2015.04.008.

[3]

J. Debbi and M. Dozzi, On the solution of nonlinear stochastic fractional partial equations in one spatial dimension, Stoch. Proc. Appl., 115 (2005), 1764-1781. doi: 10.1016/j.spa.2005.06.001.

[4]

G. Da. Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.

[5]

A. Heibig and L. I. Lalade, Well-posedness of a linearized fractional derivative fluid model, J. Math. Anal. Appl., 380 (2011), 211-255. doi: 10.1016/j.jmaa.2011.02.047.

[6]

J. HuangT. Shen and Y. Li, Dynamics of stochastic fractional Boussinesq equations, Discre. Continu. Dynam. Syst.-B, 20 (2015), 2051-2067. doi: 10.3934/dcdsb.2015.20.2051.

[7]

J. Lions, Sur l'existence de solution des équation de Navier-Stokes, C. R. Acad. Sci. Pairs, 248 (1959), 2847-2849.

[8]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperrial College Press, London, 2010.

[9]

M. Shinbrot, Fractional derivatives of solutions of the Navier-stokes equations, Arch. Ration. Mech. Anal., 40 (1971), 139-154.

[10]

Y. WangJ. Xu and P. Kloeden, Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative, Nonlin. Anal., 135 (2016), 205-222. doi: 10.1016/j.na.2016.01.020.

[11]

C. Zeng and Q. Yang, Mild solution of time fractional Navier-Stokes equations driven by fractional Brownian motion, Preprint, 2017. doi: 10.1016/j.spa.2017.03.013.

[12]

Y. Zhou and L. Peng, Weak solutions of the time-fractional Navier-Stokes equations and optimal control, Compu. Math. Appl., 73 (2017), 1016-1027. doi: 10.1016/j.camwa.2016.07.007.

[13]

Y. Zhou and L. Peng, On the time-fractional Navier-Stokes equations, Compu. Math. Appl., 73 (2017), 874-891. doi: 10.1016/j.camwa.2016.03.026.

show all references

References:
[1]

C. BardosP. PenelU. Frisch and P. Sulem, Modifed dissipativity for a nonlinear evolution equation arising in turbulence, Arch. Ration. Mech. Anal., 71 (1979), 237-256. doi: 10.1007/BF00280598.

[2]

P. M. de Carvalho-Neto and G. Planas, Mild solutions to the time fractional Navier-stokes equations in $\mathbb{R}^N$, J. Differential Equations, 259 (2015), 2948-2980. doi: 10.1016/j.jde.2015.04.008.

[3]

J. Debbi and M. Dozzi, On the solution of nonlinear stochastic fractional partial equations in one spatial dimension, Stoch. Proc. Appl., 115 (2005), 1764-1781. doi: 10.1016/j.spa.2005.06.001.

[4]

G. Da. Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.

[5]

A. Heibig and L. I. Lalade, Well-posedness of a linearized fractional derivative fluid model, J. Math. Anal. Appl., 380 (2011), 211-255. doi: 10.1016/j.jmaa.2011.02.047.

[6]

J. HuangT. Shen and Y. Li, Dynamics of stochastic fractional Boussinesq equations, Discre. Continu. Dynam. Syst.-B, 20 (2015), 2051-2067. doi: 10.3934/dcdsb.2015.20.2051.

[7]

J. Lions, Sur l'existence de solution des équation de Navier-Stokes, C. R. Acad. Sci. Pairs, 248 (1959), 2847-2849.

[8]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperrial College Press, London, 2010.

[9]

M. Shinbrot, Fractional derivatives of solutions of the Navier-stokes equations, Arch. Ration. Mech. Anal., 40 (1971), 139-154.

[10]

Y. WangJ. Xu and P. Kloeden, Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative, Nonlin. Anal., 135 (2016), 205-222. doi: 10.1016/j.na.2016.01.020.

[11]

C. Zeng and Q. Yang, Mild solution of time fractional Navier-Stokes equations driven by fractional Brownian motion, Preprint, 2017. doi: 10.1016/j.spa.2017.03.013.

[12]

Y. Zhou and L. Peng, Weak solutions of the time-fractional Navier-Stokes equations and optimal control, Compu. Math. Appl., 73 (2017), 1016-1027. doi: 10.1016/j.camwa.2016.07.007.

[13]

Y. Zhou and L. Peng, On the time-fractional Navier-Stokes equations, Compu. Math. Appl., 73 (2017), 874-891. doi: 10.1016/j.camwa.2016.03.026.

[1]

Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267

[2]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2018121

[3]

Yan Hu. Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 947-964. doi: 10.3934/cpaa.2016.15.947

[4]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[5]

Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

[6]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[7]

Nicola Abatangelo. Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5555-5607. doi: 10.3934/dcds.2015.35.5555

[8]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[9]

Alexander Quaas, Aliang Xia. Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2653-2668. doi: 10.3934/dcds.2017113

[10]

Philip M. J. Trevelyan. Approximating the large time asymptotic reaction zone solution for fractional order kinetics $A^n B^m$. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 219-234. doi: 10.3934/dcdss.2012.5.219

[11]

De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431

[12]

Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393

[13]

Selma Yildirim Yolcu, Türkay Yolcu. Sharper estimates on the eigenvalues of Dirichlet fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2209-2225. doi: 10.3934/dcds.2015.35.2209

[14]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[15]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[16]

Pooja Louhan, S. K. Suneja. On fractional vector optimization over cones with support functions. Journal of Industrial & Management Optimization, 2017, 13 (2) : 549-572. doi: 10.3934/jimo.2016031

[17]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-16. doi: 10.3934/dcdsb.2017188

[18]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[19]

S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660

[20]

Wenjing Chen. Multiplicity of solutions for a fractional Kirchhoff type problem. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2009-2020. doi: 10.3934/cpaa.2015.14.2009

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (43)
  • HTML views (264)
  • Cited by (1)

Other articles
by authors

[Back to Top]