• Previous Article
    Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$-brownian motion
  • DCDS-B Home
  • This Issue
  • Next Article
    Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise
June 2018, 23(4): 1503-1521. doi: 10.3934/dcdsb.2018054

An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems

1. 

Department of Mathematics, National Taiwan University, National Center for Theoretical Sciences, Taipei, Taiwan

2. 

College of Engineering, National Taiwan University of Science and Technology, Department of Mathematics, National Taiwan University, Taipei, Taiwan

* Corresponding author.

The research of C.-C. Chen is partly supported by the grant 102-2115-M-002-011-MY3 of Ministry of Science and Technology, Taiwan. The research of L.-C. Hung is partly supported by the grant 104EFA0101550 of Ministry of Science and Technology, Taiwan.

Received  April 2017 Published  February 2018

By employing the N-barrier method developed in C.-C. Chen and L.-C. Hung, 2016 ([6]), we establish a new N-barrier maximum principle for diffusive Lotka-Volterra systems of two competing species. To this end, this gives rise to the N-barrier maximum principle for a second-order elliptic equation involving two distinct unknown functions and a quadratic nonlinearity. An immediate consequence of the N-barrier maximum principle is an a priori estimate for the total populations of the two species. As an application of this maximum principle, we show under certain conditions the existence and nonexistence of traveling waves solutions for systems of three competing species. In addition, new $(1, 0, 0)$-$(u^{*}, v^{*}, 0)$ waves are given in terms of the tanh function, provided that the system's parameters satisfy certain conditions.

Citation: Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054
References:
[1]

M. W. Adamson and A. Y. Morozov, Revising the role of species mobility in maintaining biodiversity in communities with cyclic competition, Bull. Math. Biol., 74 (2012), 2004-2031.

[2]

R. A. Armstrong and R. McGehee, Competitive exclusion, Amer. Natur., 115 (1980), 151-170.

[3]

A. J. BaczkowskiD. N. Joanes and G. M. Shamia, Range of validity of $α$ and $β$ for a generalized diversity index $H(α, β)$ due to Good, Math. Biosci., 148 (1998), 115-128.

[4]

H. BerestyckiO. DiekmannC. J. Nagelkerke and P. A. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71 (2009), 399-429.

[5]

CantrellWard and Jr., On competition-mediated coexistence, SIAM J. Appl. Math., 57 (1997), 1311-1327.

[6]

C.-C. Chen and L.-C. Hung, A maximum principle for diffusive Lotka-Volterra systems of two competing species, J. Differential Equations, 261 (2016), 4573-4592.

[7]

CC. Chen and LC. Hung, Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive lotka-volterra systems of three competing species., Communications on Pure & Applied Analysis, 15 (2016), 1451-1469.

[8]

C.-C.Chen, L.-C.Hung and C.-C.Lai, An n-barrier maximum principle for autonomous systems of n species and its application to problems arising from population dynamics, submitted.

[9]

C.-C.Chen, L.-C.Hung and H.-F.Liu, N-barrier maximum principle for degenerate elliptic systems and its application, Discrete Contin.Dyn.Syst., to appear.

[10]

C.-C. ChenL.-C. HungM. MimuraM. Tohma and D. Ueyama, Semi-exact equilibrium solutions for three-species competition-diffusion systems, Hiroshima Math J., 43 (2013), 176-206.

[11]

C.-C. ChenL.-C. HungM. Mimura and D. Ueyama, Exact travelling wave solutions of three-species competition-diffusion systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2653-2669.

[12]

P.de Mottoni, Qualitative analysis for some quasilinear parabolic systems, Institute of Math., Polish Academy Sci., zam, 11 (1979), p.190.

[13]

S.-I. EiR. Ikota and M. Mimura, Segregating partition problem in competition-diffusion systems, Interfaces Free Bound., 1 (1999), 57-80.

[14]

I. J. Good, The population frequencies of species and the estimation of population parameters, Biometrika, 40 (1953), 237-264.

[15]

S. Grossberg, Decisions, patterns, and oscillations in nonlinear competitve systems with applications to Volterra-Lotka systems, J. Theoret. Biol., 73 (1978), 101-130.

[16]

M. Gyllenberg and P. Yan, On a conjecture for three-dimensional competitive Lotka-Volterra systems with a heteroclinic cycle, Differ. Equ. Appl., 1 (2009), 473-490.

[17]

T. G. HallamL. J. Svoboda and T. C. Gard, Persistence and extinction in three species Lotka-Volterra competitive systems, Math. Biosci., 46 (1979), 117-124.

[18]

M. W. Hirsch, Differential equations and convergence almost everywhere in strongly monotone semiflows, Contemp. Math., 17 (1983), 267-285.

[19]

X. Hou and A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008), 2196-2213.

[20]

S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single nutrient with internal storage, SIAM J. Appl. Math., 68 (2008), 1600-1617. doi: 10.1137/070700784.

[21]

S. B. HsuH. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 348 (1996), 4083-4094. doi: 10.1090/S0002-9947-96-01724-2.

[22]

L.-C. Hung, Exact traveling wave solutions for diffusive Lotka-Volterra systems of two competing species, Jpn. J. Ind. Appl. Math., 29 (2012), 237-251. doi: 10.1007/s13160-012-0056-2.

[23]

S. R.-J. Jang, Competitive exclusion and coexistence in a Leslie-Gower competition model with Allee effects, Appl. Anal., 92 (2013), 1527-1540. doi: 10.1080/00036811.2012.692365.

[24]

J. I. Kanel, On the wave front solution of a competition-diffusion system in population dynamics, Nonlinear Anal., 65 (2006), 301-320. doi: 10.1016/j.na.2005.05.014.

[25]

J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Anal., 27 (1996), 579-587. doi: 10.1016/0362-546X(95)00221-G.

[26]

J. Kastendiek, Competitor-mediated coexistence: interactions among three species of benthic macroalgae, Journal of Experimental Marine Biology and Ecology, 62 (1982), 201-210. doi: 10.1016/0022-0981(82)90201-5.

[27]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential Equations, 58 (1985), 15-21. doi: 10.1016/0022-0396(85)90020-8.

[28]

W. KoK. Ryu and I. Ahn, Coexistence of three competing species with non-negative cross-diffusion rate, J. Dyn. Control Syst., 20 (2014), 229-240. doi: 10.1007/s10883-014-9219-6.

[29]

P. Koch Medina and G. Schätti, Long-time behaviour for reaction-diffusion equations on $\mathbf R^N$, Nonlinear Anal., 25 (1995), 831-870. doi: 10.1016/0362-546X(94)00174-G.

[30]

R.S.Maier, The integration of three-dimensional Lotka-Volterra systems, Proc.R.Soc.Lond.Ser.A Math.Phys.Eng.Sci., 469 (2013), 20120693, 27pp.

[31]

R. McGehee and R. A. Armstrong, Some mathematical problems concerning the ecological principle of competitive exclusion, J. Differential Equations, 23 (1977), 30-52. doi: 10.1016/0022-0396(77)90135-8.

[32]

M. Mimura and M. Tohma, Dynamic coexistence in a three-species competition-diffusion system, Ecological Complexity, 21 (2015), 215-232. doi: 10.1016/j.ecocom.2014.05.004.

[33]

S. PetrovskiiK. KawasakiF. Takasu and N. Shigesada, Diffusive waves, dynamical stabilization and spatio-temporal chaos in a community of three competitive species, Japan J. Indust. Appl. Math., 18 (2001), 459-481. doi: 10.1007/BF03168586.

[34]

H. Ramezani and S. Holm, Sample based estimation of landscape metrics; accuracy of line intersect sampling for estimating edge density and Shannon's diversity index, Environ. Ecol. Stat., 18 (2011), 109-130. doi: 10.1007/s10651-009-0123-2.

[35]

L. Sanchez, A note on a nonautonomous O.D.E. related to the Fisher equation, J. Comput. Appl. Math., 113 (2000), 201-209. doi: 10.1016/S0377-0427(99)00254-X.

[36]

E.H.Simpson, Measurement of diversity Nature, 163 (1949), p688. doi: 10.1038/163688a0.

[37]

H. L. Smith and P. Waltman, Competition for a single limiting resource in continuous culture: the variable-yield model, SIAM J. Appl. Math., 54 (1994), 1113-1131. doi: 10.1137/S0036139993245344.

[38]

P. van den Driessche and M. L. Zeeman, Three-dimensional competitive Lotka-Volterra systems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227-234. doi: 10.1137/S0036139995294767.

[39]

A.I.Volpert, V.A.Volpert and V.A.Volpert, Traveling Wave Solutions of Parabolic Systems, vol.140 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1994.Translated from the Russian manuscript by James F.Heyda.

[40]

V. A. Volpert and Y. M. Suhov, Stationary solutions of non-autonomous Kolmogorov-Petrovsky-Piskunov equations, Ergodic Theory Dynam. Systems, 19 (1999), 809-835. doi: 10.1017/S0143385799138823.

[41]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Systems, 8 (1993), 189-217. doi: 10.1080/02681119308806158.

show all references

References:
[1]

M. W. Adamson and A. Y. Morozov, Revising the role of species mobility in maintaining biodiversity in communities with cyclic competition, Bull. Math. Biol., 74 (2012), 2004-2031.

[2]

R. A. Armstrong and R. McGehee, Competitive exclusion, Amer. Natur., 115 (1980), 151-170.

[3]

A. J. BaczkowskiD. N. Joanes and G. M. Shamia, Range of validity of $α$ and $β$ for a generalized diversity index $H(α, β)$ due to Good, Math. Biosci., 148 (1998), 115-128.

[4]

H. BerestyckiO. DiekmannC. J. Nagelkerke and P. A. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71 (2009), 399-429.

[5]

CantrellWard and Jr., On competition-mediated coexistence, SIAM J. Appl. Math., 57 (1997), 1311-1327.

[6]

C.-C. Chen and L.-C. Hung, A maximum principle for diffusive Lotka-Volterra systems of two competing species, J. Differential Equations, 261 (2016), 4573-4592.

[7]

CC. Chen and LC. Hung, Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive lotka-volterra systems of three competing species., Communications on Pure & Applied Analysis, 15 (2016), 1451-1469.

[8]

C.-C.Chen, L.-C.Hung and C.-C.Lai, An n-barrier maximum principle for autonomous systems of n species and its application to problems arising from population dynamics, submitted.

[9]

C.-C.Chen, L.-C.Hung and H.-F.Liu, N-barrier maximum principle for degenerate elliptic systems and its application, Discrete Contin.Dyn.Syst., to appear.

[10]

C.-C. ChenL.-C. HungM. MimuraM. Tohma and D. Ueyama, Semi-exact equilibrium solutions for three-species competition-diffusion systems, Hiroshima Math J., 43 (2013), 176-206.

[11]

C.-C. ChenL.-C. HungM. Mimura and D. Ueyama, Exact travelling wave solutions of three-species competition-diffusion systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2653-2669.

[12]

P.de Mottoni, Qualitative analysis for some quasilinear parabolic systems, Institute of Math., Polish Academy Sci., zam, 11 (1979), p.190.

[13]

S.-I. EiR. Ikota and M. Mimura, Segregating partition problem in competition-diffusion systems, Interfaces Free Bound., 1 (1999), 57-80.

[14]

I. J. Good, The population frequencies of species and the estimation of population parameters, Biometrika, 40 (1953), 237-264.

[15]

S. Grossberg, Decisions, patterns, and oscillations in nonlinear competitve systems with applications to Volterra-Lotka systems, J. Theoret. Biol., 73 (1978), 101-130.

[16]

M. Gyllenberg and P. Yan, On a conjecture for three-dimensional competitive Lotka-Volterra systems with a heteroclinic cycle, Differ. Equ. Appl., 1 (2009), 473-490.

[17]

T. G. HallamL. J. Svoboda and T. C. Gard, Persistence and extinction in three species Lotka-Volterra competitive systems, Math. Biosci., 46 (1979), 117-124.

[18]

M. W. Hirsch, Differential equations and convergence almost everywhere in strongly monotone semiflows, Contemp. Math., 17 (1983), 267-285.

[19]

X. Hou and A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008), 2196-2213.

[20]

S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single nutrient with internal storage, SIAM J. Appl. Math., 68 (2008), 1600-1617. doi: 10.1137/070700784.

[21]

S. B. HsuH. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 348 (1996), 4083-4094. doi: 10.1090/S0002-9947-96-01724-2.

[22]

L.-C. Hung, Exact traveling wave solutions for diffusive Lotka-Volterra systems of two competing species, Jpn. J. Ind. Appl. Math., 29 (2012), 237-251. doi: 10.1007/s13160-012-0056-2.

[23]

S. R.-J. Jang, Competitive exclusion and coexistence in a Leslie-Gower competition model with Allee effects, Appl. Anal., 92 (2013), 1527-1540. doi: 10.1080/00036811.2012.692365.

[24]

J. I. Kanel, On the wave front solution of a competition-diffusion system in population dynamics, Nonlinear Anal., 65 (2006), 301-320. doi: 10.1016/j.na.2005.05.014.

[25]

J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Anal., 27 (1996), 579-587. doi: 10.1016/0362-546X(95)00221-G.

[26]

J. Kastendiek, Competitor-mediated coexistence: interactions among three species of benthic macroalgae, Journal of Experimental Marine Biology and Ecology, 62 (1982), 201-210. doi: 10.1016/0022-0981(82)90201-5.

[27]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential Equations, 58 (1985), 15-21. doi: 10.1016/0022-0396(85)90020-8.

[28]

W. KoK. Ryu and I. Ahn, Coexistence of three competing species with non-negative cross-diffusion rate, J. Dyn. Control Syst., 20 (2014), 229-240. doi: 10.1007/s10883-014-9219-6.

[29]

P. Koch Medina and G. Schätti, Long-time behaviour for reaction-diffusion equations on $\mathbf R^N$, Nonlinear Anal., 25 (1995), 831-870. doi: 10.1016/0362-546X(94)00174-G.

[30]

R.S.Maier, The integration of three-dimensional Lotka-Volterra systems, Proc.R.Soc.Lond.Ser.A Math.Phys.Eng.Sci., 469 (2013), 20120693, 27pp.

[31]

R. McGehee and R. A. Armstrong, Some mathematical problems concerning the ecological principle of competitive exclusion, J. Differential Equations, 23 (1977), 30-52. doi: 10.1016/0022-0396(77)90135-8.

[32]

M. Mimura and M. Tohma, Dynamic coexistence in a three-species competition-diffusion system, Ecological Complexity, 21 (2015), 215-232. doi: 10.1016/j.ecocom.2014.05.004.

[33]

S. PetrovskiiK. KawasakiF. Takasu and N. Shigesada, Diffusive waves, dynamical stabilization and spatio-temporal chaos in a community of three competitive species, Japan J. Indust. Appl. Math., 18 (2001), 459-481. doi: 10.1007/BF03168586.

[34]

H. Ramezani and S. Holm, Sample based estimation of landscape metrics; accuracy of line intersect sampling for estimating edge density and Shannon's diversity index, Environ. Ecol. Stat., 18 (2011), 109-130. doi: 10.1007/s10651-009-0123-2.

[35]

L. Sanchez, A note on a nonautonomous O.D.E. related to the Fisher equation, J. Comput. Appl. Math., 113 (2000), 201-209. doi: 10.1016/S0377-0427(99)00254-X.

[36]

E.H.Simpson, Measurement of diversity Nature, 163 (1949), p688. doi: 10.1038/163688a0.

[37]

H. L. Smith and P. Waltman, Competition for a single limiting resource in continuous culture: the variable-yield model, SIAM J. Appl. Math., 54 (1994), 1113-1131. doi: 10.1137/S0036139993245344.

[38]

P. van den Driessche and M. L. Zeeman, Three-dimensional competitive Lotka-Volterra systems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227-234. doi: 10.1137/S0036139995294767.

[39]

A.I.Volpert, V.A.Volpert and V.A.Volpert, Traveling Wave Solutions of Parabolic Systems, vol.140 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1994.Translated from the Russian manuscript by James F.Heyda.

[40]

V. A. Volpert and Y. M. Suhov, Stationary solutions of non-autonomous Kolmogorov-Petrovsky-Piskunov equations, Ergodic Theory Dynam. Systems, 19 (1999), 809-835. doi: 10.1017/S0143385799138823.

[41]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Systems, 8 (1993), 189-217. doi: 10.1080/02681119308806158.

Figure 1.  Red line: $\sigma_1-c_{11}\,u-c_{12}\,v = 0$; blue line: $\sigma_2-c_{21}\,u-c_{22}\,v = 0$; green curve: $\alpha\,u\,(\sigma_1-c_{11}\,u-c_{12}\,v)+\beta\,v\,(\sigma_2-c_{21}\,u-c_{22}\,v) = 0$. $\sigma_1 = \sigma_2 = c_{11} = c_{22} = 1,c_{12} = \frac{1}{2},c_{21} = \frac{2}{3}$. (a) $\alpha = \frac{1}{2}$, $\beta = 4$ (hyperbola). (b) $\alpha = 2$, $\beta = \frac{3}{20}$ (hyperbola). (c) $\alpha = 2$, $\beta = \frac{15}{2}+3 \sqrt{6}\approx14.8485$ (parabola). (d) $\alpha = 2$, $\beta = \frac{15}{2}-3 \sqrt{6}\approx0.1515$ (parabola). (e) $\alpha = 2$, $\beta = 3$ (ellipse). (f) zooming out of (a).
Figure 2.  Red line: $\sigma_1-c_{11}\,u-c_{12}\,v = 0$; blue line: $\sigma_2-c_{21}\,u-c_{22}\,v = 0$; green curve: $\alpha\,u\,(\sigma_1-c_{11}\,u-c_{12}\,v)+\beta\,v\,(\sigma_2-c_{21}\,u-c_{22}\,v) = 0$; magenta line (above): $\alpha\,d_1\,u+\beta\,d_2\,v = \lambda_2$; magenta line (below): $\alpha\,d_1\,u+\beta\,d_2\,v = \lambda_1$; yellow line: $\alpha\,u+\beta\,v = \eta$; dashed curve: $(u(x),v(x))$. $d_1 = \sigma_1 = \sigma_2 = c_{11} = c_{22} = 1$. (a) $c_{12} = 2$, $c_{21} = 3$, $\alpha = 17$, $\beta = 18$, and $d_2 = 2$ give $\lambda_1 = \frac{17}{6}$, $\lambda_2 = \frac{17}{3}$, and $\eta = \frac{17}{6}$. (b) $c_{12} = 2$, $c_{21} = 3$, $\alpha = 17$, $\beta = 5$, and $d_2 = 2$ give $\lambda_1 = \frac{5}{2}$, $\lambda_2 = 5$, and $\eta = \frac{5}{2}$. (c) $c_{12} = 2$, $c_{21} = 3$, $\alpha = 17$, $\beta = 18$, and $d_2 = \frac{2}{3}$ give $\lambda_1 = \frac{34}{9}$, $\lambda_2 = \frac{17}{3}$, and $\eta = \frac{17}{3}$. (d) $c_{12} = 2$, $c_{21} = 3$, $\alpha = 17$, $\beta = 18$, and $d_2 = \frac{1}{2}$ give $\lambda_1 = \frac{9}{4}$, $\lambda_2 = \frac{9}{2}$, and $\eta = \frac{9}{2}$.
Figure 3.  Red line: $\sigma_1-c_{11}\,u-c_{12}\,v = 0$; blue line: $\sigma_2-c_{21}\,u-c_{22}\,v = 0$; green curve: $\alpha\,u\,(\sigma_1-c_{11}\,u-c_{12}\,v)+\beta\,v\,(\sigma_2-c_{21}\,u-c_{22}\,v) = 0$; magenta line (below): $\alpha\,d_1\,u+\beta\,d_2\,v = \lambda_2$; magenta line (above): $\alpha\,d_1\,u+\beta\,d_2\,v = \lambda_1$; yellow line: $\alpha\,u+\beta\,v = \eta$; dashed curve: $(u(x),v(x))$. $d_1 = \sigma_1 = \sigma_2 = c_{11} = c_{22} = 1$. (a) $c_{12} = 2$, $c_{21} = 3$, $\alpha = 17$, $\beta = 18$, and $d_2 = 2$ give $\lambda_1 = 72$, $\lambda_2 = 36$, and $\eta = 36$. (b) $c_{12} = 2$, $c_{21} = 3$, $\alpha = 17$, $\beta = 5$, and $d_2 = 2$ give $\lambda_1 = 34$, $\lambda_{2} = 17$, and $\eta = 17$. (c) $c_{12} = 2$, $c_{21} = 3$, $\alpha = 17$, $\beta = 33$, and $d_2 = \frac{2}{3}$ give $\lambda_1 = 33$, $\lambda_2 = 22$, and $\eta = 33$. (d) $c_{12} = 2$, $c_{21} = 3$, $\alpha = 17$, $\beta = 18$, and $d_2 = \frac{1}{2}$ give $\lambda_1 = 34$, $\lambda_2 = 17$, and $\eta = 34$.
Figure 4.  Profiles of the solution $(u(x),v(x),w(x))$.
[1]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[2]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[3]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[4]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

[5]

Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319

[6]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[7]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[8]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[9]

Masaharu Taniguchi. Traveling fronts in perturbed multistable reaction-diffusion equations. Conference Publications, 2011, 2011 (Special) : 1368-1377. doi: 10.3934/proc.2011.2011.1368

[10]

Henri Berestycki, Guillemette Chapuisat. Traveling fronts guided by the environment for reaction-diffusion equations. Networks & Heterogeneous Media, 2013, 8 (1) : 79-114. doi: 10.3934/nhm.2013.8.79

[11]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[12]

Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265

[13]

Zhi-Xian Yu, Rong Yuan. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delay and applications. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 709-728. doi: 10.3934/dcdsb.2010.13.709

[14]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[15]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[16]

Brian D. Ewald, Roger Témam. Maximum principles for the primitive equations of the atmosphere. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 343-362. doi: 10.3934/dcds.2001.7.343

[17]

Michele V. Bartuccelli, K. B. Blyuss, Y. N. Kyrychko. Length scales and positivity of solutions of a class of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 25-40. doi: 10.3934/cpaa.2004.3.25

[18]

Peter Poláčik, Eiji Yanagida. Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 209-218. doi: 10.3934/dcds.2002.8.209

[19]

Shi-Liang Wu, Yu-Juan Sun, San-Yang Liu. Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 921-946. doi: 10.3934/dcds.2013.33.921

[20]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (14)
  • HTML views (177)
  • Cited by (0)

Other articles
by authors

[Back to Top]