doi: 10.3934/dcdsb.2018053

Necessary and sufficient conditions for ergodicity of CIR model driven by stable processes with Markov switching

Department of Applied Mathematics, Donghua University, Shanghai 201620, China

* Corresponding author: Jinying Tong.

Received  April 2017 Revised  September 2017 Published  January 2018

Fund Project: The author Zhenzhong Zhang is supported by the Humanities and Social Sciences Fund of Ministry of Education of China (No. 17YJA910004). The author Jinying Tong is supported by the National Natural Science Foundation of China (Nos. 11401093 and 11471071).

In this paper, we consider long time behavior of the Cox-Ingersoll-Ross (CIR) interest rate model driven by stable processes with Markov switching. Under some assumptions, we prove an ergodicity-transience dichotomy, namely, the interest rate process is either ergodic or transient. The sufficient and necessary conditions for ergodicity and transience of such interest model are given under some assumptions. Finally, an application to interval estimation of the interest rate processes is presented to illustrate our results.

Citation: Zhenzhong Zhang, Enhua Zhang, Jinying Tong. Necessary and sufficient conditions for ergodicity of CIR model driven by stable processes with Markov switching. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018053
References:
[1]

M.Abramowitz and I.A.Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, John Wiley and Sons Incorporated, New York, 1984.

[2]

D.Applebaum, Lévy Processes and Stochastic Calculus, 2$^{nd}$ edition, Cambridge University Press, Cambridge, 2009.

[3]

A. Arapostathis, A. Biswas, L. Caffarelli, The Dirichlet problem for stable like operators and related probabilistic representations, Commun. Part. Diff. Eq., 41 (2016), 1472-1511.

[4]

A.Berman and R.J.Plemmons, Nonnegative Matrices in the Mathematical Science, SIAM Press classics Series, Philadelphia, 1994.

[5]

Z. Chen, J. Wang, Ergodicity for time-changed symmetric stable processes, Stoch. Proc. Appl., 124 (2014), 2799-2823. doi: 10.1016/j.spa.2014.04.003.

[6]

A. Clauset, C. R. Shalizi, M. E. J. Newman, Power-law distributions in empirical data, SIAM Rev., 51 (2009), 661-703. doi: 10.1137/070710111.

[7]

J. C. Cox, J. E. Ingersoll, S. A. Ross, A theory of the term structure of interest rates, Econometrica, 53 (1985), 385-407. doi: 10.2307/1911242.

[8]

N.Fournier, On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes, Ann.Inst.Henri Poincaré Probab.Stat., 49 (2013), 138-159.

[9]

K. Handa, Ergodic properties for $α$-CIR models and a class of generalized Fleming-Viot processes, Electron. J. Probab., 19 (2014), 1-25.

[10]

Y. Jiao, C. Ma, S. Scotti, Alpha-CIR model with branching processes in sovereign interest rate modelling, Financ. Stoch., 21 (2017), 789-813. doi: 10.1007/s00780-017-0333-7.

[11]

R.Khasminskii, Stochastic Stability of Differential Equations, Springer, Berlin, 2012.

[12]

X. Li, A. Gray, D. Jiang, X. Mao, Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 376 (2011), 11-28. doi: 10.1016/j.jmaa.2010.10.053.

[13]

Z. Li, C. Ma, Asymptptic properties of estimators in a stable Cox-Ingersoll-Ross model, Stoch. Proc. Appl., 125 (2015), 3196-3233. doi: 10.1016/j.spa.2015.03.002.

[14]

B. B. Mandelbrot, The variation of certain speculative prices, J. Bus., 36 (1963), 394-419.

[15]

X. Mao, Stability of stochastic differential equations with Markovian switching, Stoch. Proc. Appl., 79 (1999), 45-67. doi: 10.1016/S0304-4149(98)00070-2.

[16]

X. Mao, G. Yin, C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica, 43 (2007), 264-273. doi: 10.1016/j.automatica.2006.09.006.

[17]

M. Pinsky, R. Pinsky, Transience recurrence and central limit theorem behavior for diffusions in random temporal environments, Ann. Probab., 21 (1993), 433-452. doi: 10.1214/aop/1176989410.

[18]

G.Samorodnitsky and M.S.Taqqu, Stable Non-Gaussian Random Processes: Stochastic modeling, Chapman & Hall, New York, 1994.

[19]

N. Sandrić, Long-time behavior of stable-like processes, Stoch. Proc. Appl., 123 (2013), 1276-1300. doi: 10.1016/j.spa.2012.12.004.

[20]

D. R. Smith, Markov-switching and stochastic volatility diffusion models of short-term interest rates, J. Bus. Econ. Stat., 20 (2002), 183-197. doi: 10.1198/073500102317351949.

[21]

J.Tong and Z.Zhang, Exponential ergodicity of CIR interest rate model with random switching, Stoch.Dynam., 17 (2017), 1750037, 20pp.

[22]

J. T. Wu, Markov regimes switching with monetary fundamental-based exchange rate model, Asia Pac. Man. Rev., 20 (2015), 79-89. doi: 10.1016/j.apmrv.2014.12.009.

[23]

Z. Zhang, J. Tong, L. Hu, Long-term behavior of stochastic interest rate models with Markov switching, Insur. Math. Econ., 70 (2016), 320-326. doi: 10.1016/j.insmatheco.2016.06.017.

[24]

N. Zhou, R. Mamon, An accessible implementation of interest rate models with Markov-switching, Expert Syst. Appl., 39 (2012), 4679-4689. doi: 10.1016/j.eswa.2011.09.053.

show all references

References:
[1]

M.Abramowitz and I.A.Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, John Wiley and Sons Incorporated, New York, 1984.

[2]

D.Applebaum, Lévy Processes and Stochastic Calculus, 2$^{nd}$ edition, Cambridge University Press, Cambridge, 2009.

[3]

A. Arapostathis, A. Biswas, L. Caffarelli, The Dirichlet problem for stable like operators and related probabilistic representations, Commun. Part. Diff. Eq., 41 (2016), 1472-1511.

[4]

A.Berman and R.J.Plemmons, Nonnegative Matrices in the Mathematical Science, SIAM Press classics Series, Philadelphia, 1994.

[5]

Z. Chen, J. Wang, Ergodicity for time-changed symmetric stable processes, Stoch. Proc. Appl., 124 (2014), 2799-2823. doi: 10.1016/j.spa.2014.04.003.

[6]

A. Clauset, C. R. Shalizi, M. E. J. Newman, Power-law distributions in empirical data, SIAM Rev., 51 (2009), 661-703. doi: 10.1137/070710111.

[7]

J. C. Cox, J. E. Ingersoll, S. A. Ross, A theory of the term structure of interest rates, Econometrica, 53 (1985), 385-407. doi: 10.2307/1911242.

[8]

N.Fournier, On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes, Ann.Inst.Henri Poincaré Probab.Stat., 49 (2013), 138-159.

[9]

K. Handa, Ergodic properties for $α$-CIR models and a class of generalized Fleming-Viot processes, Electron. J. Probab., 19 (2014), 1-25.

[10]

Y. Jiao, C. Ma, S. Scotti, Alpha-CIR model with branching processes in sovereign interest rate modelling, Financ. Stoch., 21 (2017), 789-813. doi: 10.1007/s00780-017-0333-7.

[11]

R.Khasminskii, Stochastic Stability of Differential Equations, Springer, Berlin, 2012.

[12]

X. Li, A. Gray, D. Jiang, X. Mao, Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 376 (2011), 11-28. doi: 10.1016/j.jmaa.2010.10.053.

[13]

Z. Li, C. Ma, Asymptptic properties of estimators in a stable Cox-Ingersoll-Ross model, Stoch. Proc. Appl., 125 (2015), 3196-3233. doi: 10.1016/j.spa.2015.03.002.

[14]

B. B. Mandelbrot, The variation of certain speculative prices, J. Bus., 36 (1963), 394-419.

[15]

X. Mao, Stability of stochastic differential equations with Markovian switching, Stoch. Proc. Appl., 79 (1999), 45-67. doi: 10.1016/S0304-4149(98)00070-2.

[16]

X. Mao, G. Yin, C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica, 43 (2007), 264-273. doi: 10.1016/j.automatica.2006.09.006.

[17]

M. Pinsky, R. Pinsky, Transience recurrence and central limit theorem behavior for diffusions in random temporal environments, Ann. Probab., 21 (1993), 433-452. doi: 10.1214/aop/1176989410.

[18]

G.Samorodnitsky and M.S.Taqqu, Stable Non-Gaussian Random Processes: Stochastic modeling, Chapman & Hall, New York, 1994.

[19]

N. Sandrić, Long-time behavior of stable-like processes, Stoch. Proc. Appl., 123 (2013), 1276-1300. doi: 10.1016/j.spa.2012.12.004.

[20]

D. R. Smith, Markov-switching and stochastic volatility diffusion models of short-term interest rates, J. Bus. Econ. Stat., 20 (2002), 183-197. doi: 10.1198/073500102317351949.

[21]

J.Tong and Z.Zhang, Exponential ergodicity of CIR interest rate model with random switching, Stoch.Dynam., 17 (2017), 1750037, 20pp.

[22]

J. T. Wu, Markov regimes switching with monetary fundamental-based exchange rate model, Asia Pac. Man. Rev., 20 (2015), 79-89. doi: 10.1016/j.apmrv.2014.12.009.

[23]

Z. Zhang, J. Tong, L. Hu, Long-term behavior of stochastic interest rate models with Markov switching, Insur. Math. Econ., 70 (2016), 320-326. doi: 10.1016/j.insmatheco.2016.06.017.

[24]

N. Zhou, R. Mamon, An accessible implementation of interest rate models with Markov-switching, Expert Syst. Appl., 39 (2012), 4679-4689. doi: 10.1016/j.eswa.2011.09.053.

Figure 1.  Computer simulation of a single path of $X_t$ with initial value $X_0 = 0.3,r_0 = 1$ and different coefficients $\alpha = 1.25$(up), $\alpha = 1.75$(down)
Figure 2.  Computer simulation of a single path of $X_t$ with initial value $X_0 = 0.3,r_0 = 1$ and $\alpha = 1.75$.
[1]

Theodore Tachim Medjo. Pullback \begin{document}$ \mathbb{V}-$\end{document}attractor of a three dimensional globally modified two-phase flow model. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2141-2169. doi: 10.3934/dcds.2018088

[2]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global \begin{document} $\mathbf{W^{1,p}}$ \end{document}-attractors for the damped-driven Euler system in \begin{document} $\mathbb R^2$ \end{document}. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[3]

Karina Samvelyan, Frol Zapolsky. Rigidity of the \begin{document}${{L}^{p}}$\end{document}-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004

[4]

Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the \begin{document}$N$\end{document} -dimensional real space-part Ⅱ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074

[5]

Shu-Cherng Fang, David Y. Gao, Gang-Xuan Lin, Ruey-Lin Sheu, Wenxun Xing. Double well potential function and its optimization in the \begin{document}$N$\end{document} -dimensional real space-part Ⅰ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1291-1305. doi: 10.3934/jimo.2016073

[6]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with \begin{document}$ p(x) $\end{document}-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[7]

Sanjiban Santra. On the positive solutions for a perturbed negative exponent problem on \begin{document} $\mathbb{R}^3$ \end{document}. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1441-1460. doi: 10.3934/dcds.2018059

[8]

Qianying Xiao, Zuohuan Zheng. \begin{document}$C^1$\end{document} weak Palis conjecture for nonsingular flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1809-1832. doi: 10.3934/dcds.2018074

[9]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in \begin{document} $\mathbb{R}^{3}$\end{document}. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[10]

Diego Maldonado. On interior \begin{document} $C^2$ \end{document}-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[11]

James Tanis. Exponential multiple mixing for some partially hyperbolic flows on products of \begin{document}$ {\rm{PSL}}(2, \mathbb{R})$\end{document}. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 989-1006. doi: 10.3934/dcds.2018042

[12]

Wenqiang Zhao. Random dynamics of non-autonomous semi-linear degenerate parabolic equations on \begin{document} $\mathbb{R}^N$ \end{document} driven by an unbounded additive noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2018065

[13]

Karim Samei, Arezoo Soufi. Quadratic residue codes over \begin{document} $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$ \end{document}. Advances in Mathematics of Communications, 2017, 11 (4) : 791-804. doi: 10.3934/amc.2017058

[14]

Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124

[15]

Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic & Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53

[16]

Houduo Qi, ZHonghang Xia, Guangming Xing. An application of the nearest correlation matrix on web document classification. Journal of Industrial & Management Optimization, 2007, 3 (4) : 701-713. doi: 10.3934/jimo.2007.3.701

[17]

Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051

[18]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[19]

Lin Xu, Rongming Wang, Dingjun Yao. Optimal stochastic investment games under Markov regime switching market. Journal of Industrial & Management Optimization, 2014, 10 (3) : 795-815. doi: 10.3934/jimo.2014.10.795

[20]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

2016 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]