# American Institute of Mathematical Sciences

March  2018, 23(2): 939-956. doi: 10.3934/dcdsb.2018049

## Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming

 1 Faculty of Physical Sciences, University of Iceland, Dunhagi 5, IS-107 Reykjavik, Iceland 2 Svensk Exportkredit, Klarabergsviadukten 61-63, 111 64 Stockholm, Sweden 3 Department of Mathematics, University of Sussex, Falmer BN1 9QH, United Kingdom

Received  January 2017 Revised  August 2017 Published  December 2017

We study the global asymptotic stability in probability of the zero solution of linear stochastic differential equations with constant coefficients. We develop a sum-of-squares program that verifies whether a parameterized candidate Lyapunov function is in fact a global Lyapunov function for such a system. Our class of candidate Lyapunov functions are naturally adapted to the problem. We consider functions of the form $V(\mathbf{x}) = \|\mathbf{x}\|_Q^p: = (\mathbf{x}^\top Q\mathbf{x})^{\frac{p}{2}}$, where the parameters are the positive definite matrix $Q$ and the number $p>0$. We give several examples of our proposed method and show how it improves previous results.

Citation: Sigurdur Hafstein, Skuli Gudmundsson, Peter Giesl, Enrico Scalas. Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 939-956. doi: 10.3934/dcdsb.2018049
##### References:

show all references

##### References:
Results of checking whether $P_c(\mathbf{x})$ for system (14) can be written as SOS. No solution means that even for $c = 0$ SOSTOOLS was not able to write $P_c(\mathbf{x})$ as SOS. In all the experiments we set $\sigma = 2.0$. In experiments $\#1$ to $\#4$ we set $k = 1.5$ and in experiments $\#5$ to $\#9$ we set $k = 0.9$.
 # $\omega$ $p$ $c$ $D_{11}$ $D_{22}$ $D_{33}$ $O$ 1 3.0 0.5 1.6875 40.569 0.0131 8.6916 $\begin{pmatrix} -0.2380& 0.1543& 0.9590 \\ -0.8442&0.4555&-0.2827 \\ 0.4804&0.8768& -0.0218\\ \end{pmatrix}$ 2 3.0 1.0 0.6250 24.016 7.8514 0.0655 $\begin{pmatrix} -0.3602& 0.1540& 0.9200 \\ -0.7665& 0.5134& -0.3860 \\ 0.5318&0.8442&0.0669\\ \end{pmatrix}$ 3 3.0 1.1 0.2500 20.913 7.6978 0.1488 $\begin{pmatrix}-0.4043& 0.1477& 0.9026\\ -0.7377& 0.5308&-0.4173\\ 0.5407&0.8346& 0.1057 \\ \end{pmatrix}$ 4 3.0 1.2 - - - - no solution 5 4.0 0.1 1.0000 0.0296 8.463 45.200 $\begin{pmatrix} -0.8104&0.4716&-0.3476\\ 0.4819&0.8740&0.0621\\ -0.3331&0.1172&0.9356\\ \end{pmatrix}$ 6 3.5 0.1 0.6600 45.967 0.0093 7.8397 $\begin{pmatrix} -0.3094&0.1190& 0.9435\\ -0.8109&0.4852&-0.3271\\ 0.4967&0.8663& 0.0536\\ \end{pmatrix}$ 7 3.0 0.1 0.25 47.020 0.0193 7.7424 $\begin{pmatrix} -0.2913&0.1212& 0.9489\\ -0.8304&0.4605& -0.3137\\ 0.4750& 0.8793& 0.0335\\ \end{pmatrix}$ 8 2.75 0.1 0.05 47.486 0.0159 7.5072 $\begin{pmatrix} -0.2806& 0.1218& 0.9521\\ -0.8335& 0.4609&-0.3046\\ 0.4759& 0.8791& 0.0278\\ \end{pmatrix}$ 9 2.5 0.1 - - - - $\text{no solution}$
 # $\omega$ $p$ $c$ $D_{11}$ $D_{22}$ $D_{33}$ $O$ 1 3.0 0.5 1.6875 40.569 0.0131 8.6916 $\begin{pmatrix} -0.2380& 0.1543& 0.9590 \\ -0.8442&0.4555&-0.2827 \\ 0.4804&0.8768& -0.0218\\ \end{pmatrix}$ 2 3.0 1.0 0.6250 24.016 7.8514 0.0655 $\begin{pmatrix} -0.3602& 0.1540& 0.9200 \\ -0.7665& 0.5134& -0.3860 \\ 0.5318&0.8442&0.0669\\ \end{pmatrix}$ 3 3.0 1.1 0.2500 20.913 7.6978 0.1488 $\begin{pmatrix}-0.4043& 0.1477& 0.9026\\ -0.7377& 0.5308&-0.4173\\ 0.5407&0.8346& 0.1057 \\ \end{pmatrix}$ 4 3.0 1.2 - - - - no solution 5 4.0 0.1 1.0000 0.0296 8.463 45.200 $\begin{pmatrix} -0.8104&0.4716&-0.3476\\ 0.4819&0.8740&0.0621\\ -0.3331&0.1172&0.9356\\ \end{pmatrix}$ 6 3.5 0.1 0.6600 45.967 0.0093 7.8397 $\begin{pmatrix} -0.3094&0.1190& 0.9435\\ -0.8109&0.4852&-0.3271\\ 0.4967&0.8663& 0.0536\\ \end{pmatrix}$ 7 3.0 0.1 0.25 47.020 0.0193 7.7424 $\begin{pmatrix} -0.2913&0.1212& 0.9489\\ -0.8304&0.4605& -0.3137\\ 0.4750& 0.8793& 0.0335\\ \end{pmatrix}$ 8 2.75 0.1 0.05 47.486 0.0159 7.5072 $\begin{pmatrix} -0.2806& 0.1218& 0.9521\\ -0.8335& 0.4609&-0.3046\\ 0.4759& 0.8791& 0.0278\\ \end{pmatrix}$ 9 2.5 0.1 - - - - $\text{no solution}$
 [1] Hjörtur Björnsson, Sigurdur Hafstein, Peter Giesl, Enrico Scalas, Skuli Gudmundsson. Computation of the stochastic basin of attraction by rigorous construction of a Lyapunov function. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4247-4269. doi: 10.3934/dcdsb.2019080 [2] Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503 [3] Fabio Camilli, Lars Grüne. Characterizing attraction probabilities via the stochastic Zubov equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 457-468. doi: 10.3934/dcdsb.2003.3.457 [4] Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375 [5] Robert Baier, Lars Grüne, Sigurđur Freyr Hafstein. Linear programming based Lyapunov function computation for differential inclusions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 33-56. doi: 10.3934/dcdsb.2012.17.33 [6] Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116 [7] Peter Giesl, Holger Wendland. Approximating the basin of attraction of time-periodic ODEs by meshless collocation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1249-1274. doi: 10.3934/dcds.2009.25.1249 [8] Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010 [9] Fuke Wu, Xuerong Mao, Peter E. Kloeden. Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 885-903. doi: 10.3934/dcds.2013.33.885 [10] Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 695-717. doi: 10.3934/dcdsb.2018203 [11] Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701 [12] Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172 [13] Marat Akhmet, Duygu Aruğaslan. Lyapunov-Razumikhin method for differential equations with piecewise constant argument. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 457-466. doi: 10.3934/dcds.2009.25.457 [14] Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667 [15] Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099 [16] Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229 [17] Yuri Bakhtin. Lyapunov exponents for stochastic differential equations with infinite memory and application to stochastic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 697-709. doi: 10.3934/dcdsb.2006.6.697 [18] Nguyen Dinh Cong, Nguyen Thi Thuy Quynh. Coincidence of Lyapunov exponents and central exponents of linear Ito stochastic differential equations with nondegenerate stochastic term. Conference Publications, 2011, 2011 (Special) : 332-342. doi: 10.3934/proc.2011.2011.332 [19] Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153 [20] Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061

2018 Impact Factor: 1.008