2018, 23(2): 837-859. doi: 10.3934/dcdsb.2018045

Outer synchronization of delayed coupled systems on networks without strong connectedness: A hierarchical method

1. 

Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China

2. 

Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai 264209, China

* Corresponding author: Wenxue Li

Received  December 2016 Revised  September 2017 Published  December 2017

We consider the outer synchronization between drive-response systems on networks with time-varying delays, where we focus on the case when the underlying networks are not strongly connected. A hierarchical method is proposed to characterize large-scale networks without strong connectedness. The hierarchical algorithm can be implemented by some programs to overcome the difficulty resulting from the scale of networks. This method allows us to obtain two different kinds of sufficient outer synchronization criteria without the assumption of being strongly connected, by combining the theory of asymptotically autonomous systems with Lyapunov method and Kirchhoff's Matrix Tree Theorem in graph theory. The theory improves some existing results obtained by graph theory. As illustrations, the theoretic results are applied to delayed coupled oscillators and a numerical example is also given.

Citation: Shuang Liu, Wenxue Li. Outer synchronization of delayed coupled systems on networks without strong connectedness: A hierarchical method. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 837-859. doi: 10.3934/dcdsb.2018045
References:
[1]

H. Chen and J. Sun, Stability analysis for coupled systems with time delay on networks, Physica A, 391 (2012), 528-534. doi: 10.1016/j.physa.2011.08.037.

[2]

C. ChengT. Liao and C. Wang, Exponential synchronization of a class of chaotic neural networks, Chaos Soliton. Fract., 24 (2005), 197-206. doi: 10.1016/S0960-0779(04)00566-1.

[3]

C. Cheng, Robust synchronization of uncertain unified chaotic systems subject to noise and its application to secure communication, Appl. Math. Comput., 219 (2012), 2698-2712. doi: 10.1016/j.amc.2012.08.101.

[4]

Y. Dong and J. Chen, Finite-time outer synchronization between two complex dynamical networks with on-off coupling, Int. J. Model Phys. C, 26 (2015), 1550095, 13 pp.

[5]

P. Du and M. Y. Li, Impact of network connectivity on the synchronization and global dynamics of coupled systems of differential equations, Physica D, 286/287 (2014), 32-42. doi: 10.1016/j.physd.2014.07.008.

[6]

W. Du, J. Zhang, X. An, S. Qin and J. Yu, Outer synchronization between two coupled complex networks and its application in public traffic supernetwork, Discrete Dyn. Nat. Soc. , 2016 (2016), Art. ID 8920764, 8 pp.

[7]

R. Ghosh and K. Lerman, Rethinking Centrality: The role of dynamical processes in social network analysis, Discrete cont. Dyn-B, 19 (2014), 1355-1372. doi: 10.3934/dcdsb.2014.19.1355.

[8]

Y. GuoS. Liu and X. Ding, The existence of periodic solutions for coupled Rayleigh system, Neurocomputing, 191 (2016), 398-408. doi: 10.1016/j.neucom.2016.01.039.

[9]

H. GuoM. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793-2802. doi: 10.1090/S0002-9939-08-09341-6.

[10]

H. GuoM. Y. Li and Z. Shuai, Global dynamics of a general class of multistage models for infectious diseases, SIAM J. Appl. Math., 72 (2012), 261-279. doi: 10.1137/110827028.

[11]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.

[12]

Y. Kao and C. Wang, Global stability analysis for stochastic coupled reaction-diffusion systems on networks, Nonlinear Anal. RWA., 14 (2013), 1457-1465. doi: 10.1016/j.nonrwa.2012.10.008.

[13]

R. LeanderS. Lenhart and V. Protopopescu, Controlling synchrony in a network of Kuramoto oscillators with time-varying coupling, Physica D, 301/302 (2015), 36-47. doi: 10.1016/j.physd.2015.03.003.

[14]

T. LiB. Rao and Y. Wei, Generalized exact boundary synchronization for a coupled system of wave equation, Discrete cont. Dyn-A, 34 (2014), 2893-2905.

[15]

W. LiS. Liu and D. Xu, The existence of periodic solutions for coupled pantograph Rayleigh system, Math. Methods Appl. Sci., 39 (2016), 1667-1679. doi: 10.1002/mma.3556.

[16]

C. LiW. Sun and J. Kurths, Synchronization between two coupled complex networks, Phys. Rev. E, 76 (2007), 046204. doi: 10.1103/PhysRevE.76.046204.

[17]

M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differ. Equ., 248 (2010), 1-20. doi: 10.1016/j.jde.2009.09.003.

[18]

W. LiH. Su and K. Wang, Global stability analysis for stochastic coupled systems on networks, Automatica, 47 (2011), 215-220. doi: 10.1016/j.automatica.2010.10.041.

[19]

B. Lisena, Average criteria for periodic neural networks with delay, Discrete cont. Dyn-B, 19 (2014), 761-773. doi: 10.3934/dcdsb.2014.19.761.

[20]

X. Liu and T. Chen, Boundedness and synchronization of $y$-coupled Lorenz systems with or without controllers, Physica D, 237 (2008), 630-639. doi: 10.1016/j.physd.2007.10.006.

[21]

Y. LouW. M. Ni and S. Yotsutani, Pattern formation in a cross-diffusion system, Discrete cont. Dyn-A, 35 (2015), 1589-1607.

[22]

K. MischaikowH. Smith and H. Thieme, Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions, T. Am. Math. Soc., 347 (1995), 1669-1685. doi: 10.1090/S0002-9947-1995-1290727-7.

[23]

K. Modin and O. Verdier, Integrability of nonholonomically coupled oscillators, Discrete cont. Dyn-A, 34 (2014), 1121-1130.

[24]

H. ShuD. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. RWA., 13 (2012), 1581-1592. doi: 10.1016/j.nonrwa.2011.11.016.

[25]

S. H. Strogatz, Exploring complex networks, Nature, 140 (2001), 268-276. doi: 10.1038/35065725.

[26]

H. Su, W. Li and K. Wang, Global stability analysis of discrete-time coupled systems on networks and its applications, Chaos, 22 (2012), 033135, 11pp.

[27]

R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972), 146-160. doi: 10.1137/0201010.

[28]

H. Thieme, Asymptotically autonomous differential equations in the plane, Rocky Mt. J. Math., 24 (1994), 351-380.

[29]

J. P. Tseng, Global asymptotic dynamics of a class of nonlinearly coupled neural networks with delays, Discrete cont. Dyn-A, 33 (2013), 4693-4729. doi: 10.3934/dcds.2013.33.4693.

[30]

G. WangJ. Cao and J. Lu, Outer synchronization between two nonidentical networks with circumstance noise, Physica A, 389 (2010), 1480-1488. doi: 10.1016/j.physa.2009.12.014.

[31]

D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996.

[32]

J. Xu, D. Park and J. Jo, Local complexity predicts global synchronization of hierarchically networked oscillators, Chaos, 27 (2017), 073116, 11pp.

[33]

C. ZhangW. Li and K. Wang, Graph theory-based approach for stability analysis of stochastic coupled systems with Lévy noise on networks, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 1698-1709. doi: 10.1109/TNNLS.2014.2352217.

[34]

L. Zhang, Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks, Discrete cont. Dyn-A, 34 (2014), 2405-2450.

[35]

S. ZhengS. WangG. Dong and Q. Bi, Adaptive synchronization of two nonlinearly coupled complex dynamical networks with delayed coupling, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 284-291. doi: 10.1016/j.cnsns.2010.11.029.

[36]

Q. Zhu and J. Cao, pth moment exponential synchronization for stochastic delayed Cohen-Grossberg neural networks with Markovian switching, Nonlinear Dyn., 67 (2012), 829-845. doi: 10.1007/s11071-011-0029-z.

show all references

References:
[1]

H. Chen and J. Sun, Stability analysis for coupled systems with time delay on networks, Physica A, 391 (2012), 528-534. doi: 10.1016/j.physa.2011.08.037.

[2]

C. ChengT. Liao and C. Wang, Exponential synchronization of a class of chaotic neural networks, Chaos Soliton. Fract., 24 (2005), 197-206. doi: 10.1016/S0960-0779(04)00566-1.

[3]

C. Cheng, Robust synchronization of uncertain unified chaotic systems subject to noise and its application to secure communication, Appl. Math. Comput., 219 (2012), 2698-2712. doi: 10.1016/j.amc.2012.08.101.

[4]

Y. Dong and J. Chen, Finite-time outer synchronization between two complex dynamical networks with on-off coupling, Int. J. Model Phys. C, 26 (2015), 1550095, 13 pp.

[5]

P. Du and M. Y. Li, Impact of network connectivity on the synchronization and global dynamics of coupled systems of differential equations, Physica D, 286/287 (2014), 32-42. doi: 10.1016/j.physd.2014.07.008.

[6]

W. Du, J. Zhang, X. An, S. Qin and J. Yu, Outer synchronization between two coupled complex networks and its application in public traffic supernetwork, Discrete Dyn. Nat. Soc. , 2016 (2016), Art. ID 8920764, 8 pp.

[7]

R. Ghosh and K. Lerman, Rethinking Centrality: The role of dynamical processes in social network analysis, Discrete cont. Dyn-B, 19 (2014), 1355-1372. doi: 10.3934/dcdsb.2014.19.1355.

[8]

Y. GuoS. Liu and X. Ding, The existence of periodic solutions for coupled Rayleigh system, Neurocomputing, 191 (2016), 398-408. doi: 10.1016/j.neucom.2016.01.039.

[9]

H. GuoM. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793-2802. doi: 10.1090/S0002-9939-08-09341-6.

[10]

H. GuoM. Y. Li and Z. Shuai, Global dynamics of a general class of multistage models for infectious diseases, SIAM J. Appl. Math., 72 (2012), 261-279. doi: 10.1137/110827028.

[11]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.

[12]

Y. Kao and C. Wang, Global stability analysis for stochastic coupled reaction-diffusion systems on networks, Nonlinear Anal. RWA., 14 (2013), 1457-1465. doi: 10.1016/j.nonrwa.2012.10.008.

[13]

R. LeanderS. Lenhart and V. Protopopescu, Controlling synchrony in a network of Kuramoto oscillators with time-varying coupling, Physica D, 301/302 (2015), 36-47. doi: 10.1016/j.physd.2015.03.003.

[14]

T. LiB. Rao and Y. Wei, Generalized exact boundary synchronization for a coupled system of wave equation, Discrete cont. Dyn-A, 34 (2014), 2893-2905.

[15]

W. LiS. Liu and D. Xu, The existence of periodic solutions for coupled pantograph Rayleigh system, Math. Methods Appl. Sci., 39 (2016), 1667-1679. doi: 10.1002/mma.3556.

[16]

C. LiW. Sun and J. Kurths, Synchronization between two coupled complex networks, Phys. Rev. E, 76 (2007), 046204. doi: 10.1103/PhysRevE.76.046204.

[17]

M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differ. Equ., 248 (2010), 1-20. doi: 10.1016/j.jde.2009.09.003.

[18]

W. LiH. Su and K. Wang, Global stability analysis for stochastic coupled systems on networks, Automatica, 47 (2011), 215-220. doi: 10.1016/j.automatica.2010.10.041.

[19]

B. Lisena, Average criteria for periodic neural networks with delay, Discrete cont. Dyn-B, 19 (2014), 761-773. doi: 10.3934/dcdsb.2014.19.761.

[20]

X. Liu and T. Chen, Boundedness and synchronization of $y$-coupled Lorenz systems with or without controllers, Physica D, 237 (2008), 630-639. doi: 10.1016/j.physd.2007.10.006.

[21]

Y. LouW. M. Ni and S. Yotsutani, Pattern formation in a cross-diffusion system, Discrete cont. Dyn-A, 35 (2015), 1589-1607.

[22]

K. MischaikowH. Smith and H. Thieme, Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions, T. Am. Math. Soc., 347 (1995), 1669-1685. doi: 10.1090/S0002-9947-1995-1290727-7.

[23]

K. Modin and O. Verdier, Integrability of nonholonomically coupled oscillators, Discrete cont. Dyn-A, 34 (2014), 1121-1130.

[24]

H. ShuD. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. RWA., 13 (2012), 1581-1592. doi: 10.1016/j.nonrwa.2011.11.016.

[25]

S. H. Strogatz, Exploring complex networks, Nature, 140 (2001), 268-276. doi: 10.1038/35065725.

[26]

H. Su, W. Li and K. Wang, Global stability analysis of discrete-time coupled systems on networks and its applications, Chaos, 22 (2012), 033135, 11pp.

[27]

R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972), 146-160. doi: 10.1137/0201010.

[28]

H. Thieme, Asymptotically autonomous differential equations in the plane, Rocky Mt. J. Math., 24 (1994), 351-380.

[29]

J. P. Tseng, Global asymptotic dynamics of a class of nonlinearly coupled neural networks with delays, Discrete cont. Dyn-A, 33 (2013), 4693-4729. doi: 10.3934/dcds.2013.33.4693.

[30]

G. WangJ. Cao and J. Lu, Outer synchronization between two nonidentical networks with circumstance noise, Physica A, 389 (2010), 1480-1488. doi: 10.1016/j.physa.2009.12.014.

[31]

D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996.

[32]

J. Xu, D. Park and J. Jo, Local complexity predicts global synchronization of hierarchically networked oscillators, Chaos, 27 (2017), 073116, 11pp.

[33]

C. ZhangW. Li and K. Wang, Graph theory-based approach for stability analysis of stochastic coupled systems with Lévy noise on networks, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 1698-1709. doi: 10.1109/TNNLS.2014.2352217.

[34]

L. Zhang, Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks, Discrete cont. Dyn-A, 34 (2014), 2405-2450.

[35]

S. ZhengS. WangG. Dong and Q. Bi, Adaptive synchronization of two nonlinearly coupled complex dynamical networks with delayed coupling, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 284-291. doi: 10.1016/j.cnsns.2010.11.029.

[36]

Q. Zhu and J. Cao, pth moment exponential synchronization for stochastic delayed Cohen-Grossberg neural networks with Markovian switching, Nonlinear Dyn., 67 (2012), 829-845. doi: 10.1007/s11071-011-0029-z.

Figure 1.  Example of two networks with identical coupling structure. The solid lines represent the deterministic coupling among the nodes within a network, while dashed ones represent the coupling between the drive network and response network.
Figure 2.  A general digraph $\mathcal{G}$ with 67 vertices and the corresponding condensed digraph $\mathcal{H}$
Figure 3.  Digraph $(\mathcal{G},B)$ with 20 vertices and a not strongly connected network.
Figure 4.  The pathes of the derive system (7) with initial value $(x_{1+5i} = 50,\tilde{x}_{1+5i} = -50,x_{2+5i} = 60,$$\tilde{x}_{2+5i} = -60,x_{3+5i} = 0,\tilde{x}_{3+5i} = 0,x_{4+5i} = 60,$$\tilde{x}_{4+5i} = -60,x_{5+5i} = 70,\tilde{x}_{5+5i} = -70,i = 0,1,2,3)$.
Figure 5.  The pathes of response system (8) with initial value $(y_{1+5i} = 0,\tilde{y}_{1+5i} = -170,y_{2+5i} = -70,$$\tilde{y}_{2+5i} = 30,y_{3+5i} = 0,\tilde{y}_{3+5i} = 0,y_{4+5i} = -30,$$\tilde{y}_{4+5i} = 30,y_{5+5i} = 40,\tilde{y}_{5+5i} = 20,i = 0,1,2,3)$.
Figure 6.  The pathes of the synchronization error system with initial value $(e_{1+5i} = -50,\tilde{e}_{1+5i} = -120,e_{2+5i} = -130,$$\tilde{e}_{2+5i} = 90,e_{3+5i} = 0,\tilde{e}_{3+5i} = 0,e_{4+5i} = -100,$$e_{5+5i} = -40,\tilde{e}_{5+5i} = 110,i = 0,1,2,3)$.
Figure 7.  Digraph $(\mathcal{G},A)$ and its strongly connected components $\mathfrak{H}_{i}$ are shown in (a). The corresponding condensed digraph $\mathcal{H}$ is shown in (b).
Table1 
$\mathrm{Forms}$ $k\in\{1,\ldots,5\}$ $k\in\{6,\ldots,10\}$ $k\in\{11,\ldots,15\}$ $k\in\{16,\ldots,20\}$
$\tau_{k}(t)$ $0.5(\sin(t)+1)$ $0.5(\cos(t)+1)$ $0.4(\sin(t)+1)$ $0.4(\cos(t)+1)$
$ N_{h}(x_{h})$ $\sin(x_{h})$ $\cos(x_{h})$ $0.5\sin(2x_{h})$ $0.5\cos(2x_{h})$
$\mathrm{Forms}$ $k\in\{1,\ldots,5\}$ $k\in\{6,\ldots,10\}$ $k\in\{11,\ldots,15\}$ $k\in\{16,\ldots,20\}$
$\tau_{k}(t)$ $0.5(\sin(t)+1)$ $0.5(\cos(t)+1)$ $0.4(\sin(t)+1)$ $0.4(\cos(t)+1)$
$ N_{h}(x_{h})$ $\sin(x_{h})$ $\cos(x_{h})$ $0.5\sin(2x_{h})$ $0.5\cos(2x_{h})$
Table2 
$\mathrm{Parameters}$ $k\in\{1,\ldots,5\}$ $k\in\{6,\ldots,10\}$ $k\in\{11,\ldots,15\}$ $k\in\{16,\ldots,20\}$
$\epsilon_{k}$ $1.8$ $1.9$ $2.0$ $2.1$
$ \varepsilon_{k}$ $0.05$ $0.1$ $0.15$ $0.2$
$\mathrm{Parameters}$ $k\in\{1,\ldots,5\}$ $k\in\{6,\ldots,10\}$ $k\in\{11,\ldots,15\}$ $k\in\{16,\ldots,20\}$
$\epsilon_{k}$ $1.8$ $1.9$ $2.0$ $2.1$
$ \varepsilon_{k}$ $0.05$ $0.1$ $0.15$ $0.2$
[1]

Xianjin Chen, Jianxin Zhou. A local min-orthogonal method for multiple solutions of strongly coupled elliptic systems. Conference Publications, 2009, 2009 (Special) : 151-160. doi: 10.3934/proc.2009.2009.151

[2]

V. Afraimovich, J.-R. Chazottes, A. Cordonet. Synchronization in directionally coupled systems: Some rigorous results. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 421-442. doi: 10.3934/dcdsb.2001.1.421

[3]

Dung Le. Partial regularity of solutions to a class of strongly coupled degenerate parabolic systems. Conference Publications, 2005, 2005 (Special) : 576-586. doi: 10.3934/proc.2005.2005.576

[4]

Huan Su, Pengfei Wang, Xiaohua Ding. Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 253-269. doi: 10.3934/dcdsb.2016.21.253

[5]

Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435

[6]

Dung Le. Global existence and regularity results for strongly coupled nonregular parabolic systems via iterative methods. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 877-893. doi: 10.3934/dcdsb.2017044

[7]

Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

[8]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks & Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

[9]

M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks & Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201

[10]

Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial & Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87

[11]

Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261

[12]

Getachew K. Befekadu, Eduardo L. Pasiliao. On the hierarchical optimal control of a chain of distributed systems. Journal of Dynamics & Games, 2015, 2 (2) : 187-199. doi: 10.3934/jdg.2015.2.187

[13]

Zhong-Zhi Bai. On convergence of the inner-outer iteration method for computing PageRank. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 855-862. doi: 10.3934/naco.2012.2.855

[14]

Paola Favati, Grazia Lotti, Ornella Menchi, Francesco Romani. An inner-outer regularizing method for ill-posed problems. Inverse Problems & Imaging, 2014, 8 (2) : 409-420. doi: 10.3934/ipi.2014.8.409

[15]

Barton E. Lee. Consensus and voting on large graphs: An application of graph limit theory. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1719-1744. doi: 10.3934/dcds.2018071

[16]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[17]

Matthew Macauley, Henning S. Mortveit. Update sequence stability in graph dynamical systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1533-1541. doi: 10.3934/dcdss.2011.4.1533

[18]

Chun-Xiang Guo, Guo Qiang, Jin Mao-Zhu, Zhihan Lv. Dynamic systems based on preference graph and distance. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1139-1154. doi: 10.3934/dcdss.2015.8.1139

[19]

R. Yamapi, R.S. MacKay. Stability of synchronization in a shift-invariant ring of mutually coupled oscillators. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 973-996. doi: 10.3934/dcdsb.2008.10.973

[20]

Tatsien Li, Bopeng Rao, Yimin Wei. Generalized exact boundary synchronization for a coupled system of wave equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2893-2905. doi: 10.3934/dcds.2014.34.2893

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (17)
  • HTML views (36)
  • Cited by (0)

Other articles
by authors

[Back to Top]