# American Institute of Mathematical Sciences

March  2018, 23(2): 809-836. doi: 10.3934/dcdsb.2018044

## Boundedness of positive solutions of a system of nonlinear delay differential equations

 Department of Mathematics, University of Pannonia, Veszprém, H-8200, Hungary

Received  December 2016 Revised  August 2017 Published  December 2017

In this manuscript the system of nonlinear delay differential equations $\dot{x}_i(t) =\sum\limits_{j =1}^{n}\sum\limits_{\ell =1}^{n_0}α_{ij\ell} (t) h_{ij}(x_j(t-τ_{ij\ell}(t)))$$-β_i(t)f_i(x_i(t))+ρ_i(t)$, $t≥0$, $1≤i ≤n$ is considered. Sufficient conditions are established for the uniform permanence of the positive solutions of the system. In several particular cases, explicit formulas are given for the estimates of the upper and lower limit of the solutions. In a special case, the asymptotic equivalence of the solutions is investigated.

Citation: István Győri, Ferenc Hartung, Nahed A. Mohamady. Boundedness of positive solutions of a system of nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 809-836. doi: 10.3934/dcdsb.2018044
##### References:

show all references

##### References:
Numerical solution of the System (27).
Numerical solution of the System (40).
Numerical solution of the System (28)
 $k$ $\underline{x}_1^{(k)}$ $\underline{x}_2^{(k)}$ $\underline{x}_3^{(k)}$ $0$ $0$ $0$ $0$ $1$ $0.3761$ $1.7105$ $1.9834$ $2$ $1.8185$ $4.8060$ $3.7077$ $3$ $3.6353$ $7.5553$ $5.9214$ $4$ $4.0406$ $7.9252$ $6.4602$ $5$ $4.4130$ $8.1962$ $6.9628$ $6$ $4.5364$ $8.2765$ $7.1294$ $7$ $4.5767$ $8.3023$ $7.1836$ $8$ $4.5958$ $8.3146$ $7.2092$ $9$ $4.5960$ $8.3147$ $7.2095$ $10$ $4.5960$ $8.3147$ $7.2095$
 $k$ $\underline{x}_1^{(k)}$ $\underline{x}_2^{(k)}$ $\underline{x}_3^{(k)}$ $0$ $0$ $0$ $0$ $1$ $0.3761$ $1.7105$ $1.9834$ $2$ $1.8185$ $4.8060$ $3.7077$ $3$ $3.6353$ $7.5553$ $5.9214$ $4$ $4.0406$ $7.9252$ $6.4602$ $5$ $4.4130$ $8.1962$ $6.9628$ $6$ $4.5364$ $8.2765$ $7.1294$ $7$ $4.5767$ $8.3023$ $7.1836$ $8$ $4.5958$ $8.3146$ $7.2092$ $9$ $4.5960$ $8.3147$ $7.2095$ $10$ $4.5960$ $8.3147$ $7.2095$
Numerical solution of the System (30)
 $k$ $\overline{x}_1^{(k)}$ $\overline{x}_2^{(k)}$ $\overline{x}_3^{(k)}$ $0$ $0$ $0$ $0$ $1$ $0.6849$ $2.0198$ $2.8145$ $2$ $2.9151$ $5.9799$ $5.0354$ $3$ $5.5288$ $9.7858$ $7.5194$ $4$ $6.4086$ $10.7362$ $8.3557$ $5$ $6.6740$ $11.0053$ $8.6081$ $6$ $6.7520$ $11.0838$ $8.6822$ $7$ $6.7747$ $11.1067$ $8.7038$ $8$ $6.7839$ $11.1159$ $8.7125$ $9$ $6.7840$ $11.1161$ $8.7126$ $10$ $6.7840$ $11.1161$ $8.7126$
 $k$ $\overline{x}_1^{(k)}$ $\overline{x}_2^{(k)}$ $\overline{x}_3^{(k)}$ $0$ $0$ $0$ $0$ $1$ $0.6849$ $2.0198$ $2.8145$ $2$ $2.9151$ $5.9799$ $5.0354$ $3$ $5.5288$ $9.7858$ $7.5194$ $4$ $6.4086$ $10.7362$ $8.3557$ $5$ $6.6740$ $11.0053$ $8.6081$ $6$ $6.7520$ $11.0838$ $8.6822$ $7$ $6.7747$ $11.1067$ $8.7038$ $8$ $6.7839$ $11.1159$ $8.7125$ $9$ $6.7840$ $11.1161$ $8.7126$ $10$ $6.7840$ $11.1161$ $8.7126$
Numerical solution of the System (41)
 $k$ $\underline{x}_1^{(k)}$ $\underline{x}_2^{(k)}$ $0$ $0$ $0$ $1$ $3.4641$ $1.0831$ $2$ $4.7663$ $2.5795$ $3$ $5.2031$ $3.7627$ $4$ $5.4246$ $4.8659$ $5$ $5.4659$ $5.1549$ $6$ $5.4721$ $5.2008$ $7$ $5.4751$ $5.2419$ $8$ $5.4777$ $5.2429$ $9$ $5.4778$ $5.2430$ $10$ $5.4778$ $5.2430$
 $k$ $\underline{x}_1^{(k)}$ $\underline{x}_2^{(k)}$ $0$ $0$ $0$ $1$ $3.4641$ $1.0831$ $2$ $4.7663$ $2.5795$ $3$ $5.2031$ $3.7627$ $4$ $5.4246$ $4.8659$ $5$ $5.4659$ $5.1549$ $6$ $5.4721$ $5.2008$ $7$ $5.4751$ $5.2419$ $8$ $5.4777$ $5.2429$ $9$ $5.4778$ $5.2430$ $10$ $5.4778$ $5.2430$
Numerical solution of the System (43)
 $k$ $\overline{x}_1^{(k)}$ $\overline{x}_2^{(k)}$ $0$ $0$ $0$ $1$ $4.4721$ $4.6552$ $2$ $6.3445$ $7.3850$ $3$ $7.0199$ $8.5877$ $4$ $7.2586$ $9.0666$ $5$ $7.3436$ $9.2503$ $6$ $7.3744$ $9.3198$ $7$ $7.3918$ $9.3608$ $8$ $7.3920$ $9.3615$ $9$ $7.3921$ $9.3616$ $10$ $7.3921$ $9.3616$
 $k$ $\overline{x}_1^{(k)}$ $\overline{x}_2^{(k)}$ $0$ $0$ $0$ $1$ $4.4721$ $4.6552$ $2$ $6.3445$ $7.3850$ $3$ $7.0199$ $8.5877$ $4$ $7.2586$ $9.0666$ $5$ $7.3436$ $9.2503$ $6$ $7.3744$ $9.3198$ $7$ $7.3918$ $9.3608$ $8$ $7.3920$ $9.3615$ $9$ $7.3921$ $9.3616$ $10$ $7.3921$ $9.3616$
 [1] Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2019062 [2] Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97 [3] Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487 [4] Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105 [5] Josef Diblík. Long-time behavior of positive solutions of a differential equation with state-dependent delay. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 31-46. doi: 10.3934/dcdss.2020002 [6] Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737 [7] Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407 [8] Yinbin Deng, Qi Gao. Asymptotic behavior of the positive solutions for an elliptic equation with Hardy term. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 367-380. doi: 10.3934/dcds.2009.24.367 [9] Rafael Obaya, Ana M. Sanz. Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3947-3970. doi: 10.3934/dcdsb.2018338 [10] Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251 [11] Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463 [12] Yutian Lei, Chao Ma. Asymptotic behavior for solutions of some integral equations. Communications on Pure & Applied Analysis, 2011, 10 (1) : 193-207. doi: 10.3934/cpaa.2011.10.193 [13] Songbai Guo, Wanbiao Ma. Global behavior of delay differential equations model of HIV infection with apoptosis. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 103-119. doi: 10.3934/dcdsb.2016.21.103 [14] Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272 [15] Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041 [16] Daria Bugajewska, Mirosława Zima. On positive solutions of nonlinear fractional differential equations. Conference Publications, 2003, 2003 (Special) : 141-146. doi: 10.3934/proc.2003.2003.141 [17] Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432 [18] Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727 [19] Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707 [20] Akisato Kubo. Asymptotic behavior of solutions of the mixed problem for semilinear hyperbolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 59-74. doi: 10.3934/cpaa.2004.3.59

2018 Impact Factor: 1.008