March 2018, 23(2): 749-763. doi: 10.3934/dcdsb.2018041

Long-time behavior of a class of nonlocal partial differential equations

1. 

School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China

2. 

School of Mathematics and Statistics, Xidian University, Xi'an 710126, China

3. 

Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA

* Corresponding author

Received  October 2016 Revised  October 2017 Published  December 2017

Fund Project: Zhang was supported by NSFC Grant (11701230)

This work is devoted to investigate the well-posedness and long-time behavior of solutions for the following nonlocal nonlinear partial differential equations in a bounded domain
$\begin{align*}u_t+(-Δ)^{σ/2}u +f(u) = g.\end{align*}$
Firstly, due to the lack of an upper growth restriction of the nonlinearity $f$, we have to utilize a weak compactness approach in an Orlicz space to obtain the well-posedness of weak solutions for the equations. We then establish the existence of
$(L^2_0(Ω), L^2_0(Ω))$
-absorbing sets and
$(L^2_0(Ω), H^{σ/2}_0(Ω))$
-absorbing sets for the solution semigroup
$\{S(t)\}_{t≥q 0}$
. Finally, we prove the existence of
$(L^2_0(Ω), L^2_0(Ω))$
-global attractor and
$(L^2_0(Ω), H^{σ/2}_0(Ω))$
-global attractor by a asymptotic compactness method.
Citation: Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041
References:
[1]

D. Applebaum, Lévy Processes and Stochastic Calculus, Second edition. Cambridge Studies in Advanced Mathematics, 116. Cambridge University Press, Cambridge, 2009.

[2]

I. Athanasopoulos and L. A. Caffarelli, Continuity of the temperature in boundary heat control problems, Adv. Math., 224 (2010), 293-315. doi: 10.1016/j.aim.2009.11.010.

[3]

A. Babin and M. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.

[4]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996.

[5]

C. BrändleE. ColoradoA. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Math. Roy. Soc. Edinb., 143 (2013), 39-71. doi: 10.1017/S0308210511000175.

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Diff. Eq., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.

[7]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Ann. Math., 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903.

[8]

Z. Chen and R. Song, Hardy inequality for censored stable processes, Tohoku Math. J., 55 (2003), 439-450. doi: 10.2748/tmj/1113247482.

[9]

R. Cont and P. Tankov, Financial Modelling With Jump Processes, Boca Raton, FL: Chapman Hall/CRC, 2004.

[10] J. Duan, An Introduction to Stochastic Dynamics, Cambridge University Press, New York, 2015.
[11]

X. Fernández-Real and X. Ros-Oton, Boundary regularity for the fractional heat equation, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 10 (2016), 49-64. doi: 10.1007/s13398-015-0218-6.

[12]

M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Second revised and extended edition. De Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 2011.

[13]

P. Geredeli and A. Khanmamedov, Long-time dynamics of the parabolic $p$-Laplacian equation, Commun. Pure Appl. Anal., 12 (2013), 735-754.

[14]

A. KiselevF. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453. doi: 10.1007/s00222-006-0020-3.

[15]

M. Krasnoselskii and Y. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961.

[16]

J. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, New York: Springer-Verlag, Vol Ⅰ, 1973.

[17]

H. LuP. BatesS. Lü and M. Zhang, Dynamics of the 3-D fractional complex GinzburgLandau equation, J. Differ. Equ., 259 (2015), 5276-5301. doi: 10.1016/j.jde.2015.06.028.

[18]

H. LuP. BatesS. Lü and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295. doi: 10.4310/CMS.2016.v14.n1.a11.

[19]

J. Mercado, E. Guido, A. Sánchez-Sesma, M. ͘ñiguez and A. González, Analysis of the Blasius Formula and the Navier-Stokes Fractional Equation, Chapter Fluid Dynamics in Physics, Engineering and Environmental Applications Part of the series Environmental Science and Engineering, (2012), 475–480.

[20]

R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Mathematical and General, 37 (2004), 161-208. doi: 10.1088/0305-4470/37/31/R01.

[21]

E. NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[22]

A. de PabloF. QuirósA. Rodriguez and J. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), 1378-1409. doi: 10.1016/j.aim.2010.07.017.

[23]

A. de PabloF. QuirósA. Rodriguez and J. Vázquez, A general fractional porous medium equation, Comm. Pure Applied Math., 65 (2012), 1242-1284. doi: 10.1002/cpa.21408.

[24]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.

[25]

J. Simon, Compact sets in the space Lp(O, T; B), Annali di Matematica Pura ed Applicata, 146 (1987), 65-96.

[26]

R. Song and Z. Vondraček, Potential theory of subordinate killed Brownian motion in a domain, Probab. Theory Relat. Fields, 125 (2003), 578-592. doi: 10.1007/s00440-002-0251-1.

[27]

P. Stinga and J. Torrea, Extension problem and Harnack's inequality for some fractional operators, Commun. Partial Differ. Equ., 35 (2010), 2092-2122. doi: 10.1080/03605301003735680.

[28]

J. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885. doi: 10.3934/dcdss.2014.7.857.

[29]

M. YangC. Sun and C. Zhong, Global attractors for p-Laplacian equation, J. Math. Anal. Appl., 327 (2007), 1130-1142. doi: 10.1016/j.jmaa.2006.04.085.

[30]

X. Zhang, Stochastic lagrangian particle approach to fractal Navier-Stokes equations, Commun. Math. Phys., 311 (2012), 133-155. doi: 10.1007/s00220-012-1414-2.

[31]

C. ZhangJ. Zhang and C. Zhong, Existence of weak solutions for fractional porous medium equations with nonlinear term, Appl. Math. Lett., 61 (2016), 95-101. doi: 10.1016/j.aml.2016.05.001.

[32]

C. ZhongM. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differ. Equ., 223 (2006), 367-399. doi: 10.1016/j.jde.2005.06.008.

show all references

References:
[1]

D. Applebaum, Lévy Processes and Stochastic Calculus, Second edition. Cambridge Studies in Advanced Mathematics, 116. Cambridge University Press, Cambridge, 2009.

[2]

I. Athanasopoulos and L. A. Caffarelli, Continuity of the temperature in boundary heat control problems, Adv. Math., 224 (2010), 293-315. doi: 10.1016/j.aim.2009.11.010.

[3]

A. Babin and M. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.

[4]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996.

[5]

C. BrändleE. ColoradoA. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Math. Roy. Soc. Edinb., 143 (2013), 39-71. doi: 10.1017/S0308210511000175.

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Diff. Eq., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.

[7]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Ann. Math., 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903.

[8]

Z. Chen and R. Song, Hardy inequality for censored stable processes, Tohoku Math. J., 55 (2003), 439-450. doi: 10.2748/tmj/1113247482.

[9]

R. Cont and P. Tankov, Financial Modelling With Jump Processes, Boca Raton, FL: Chapman Hall/CRC, 2004.

[10] J. Duan, An Introduction to Stochastic Dynamics, Cambridge University Press, New York, 2015.
[11]

X. Fernández-Real and X. Ros-Oton, Boundary regularity for the fractional heat equation, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 10 (2016), 49-64. doi: 10.1007/s13398-015-0218-6.

[12]

M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Second revised and extended edition. De Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 2011.

[13]

P. Geredeli and A. Khanmamedov, Long-time dynamics of the parabolic $p$-Laplacian equation, Commun. Pure Appl. Anal., 12 (2013), 735-754.

[14]

A. KiselevF. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453. doi: 10.1007/s00222-006-0020-3.

[15]

M. Krasnoselskii and Y. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961.

[16]

J. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, New York: Springer-Verlag, Vol Ⅰ, 1973.

[17]

H. LuP. BatesS. Lü and M. Zhang, Dynamics of the 3-D fractional complex GinzburgLandau equation, J. Differ. Equ., 259 (2015), 5276-5301. doi: 10.1016/j.jde.2015.06.028.

[18]

H. LuP. BatesS. Lü and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295. doi: 10.4310/CMS.2016.v14.n1.a11.

[19]

J. Mercado, E. Guido, A. Sánchez-Sesma, M. ͘ñiguez and A. González, Analysis of the Blasius Formula and the Navier-Stokes Fractional Equation, Chapter Fluid Dynamics in Physics, Engineering and Environmental Applications Part of the series Environmental Science and Engineering, (2012), 475–480.

[20]

R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Mathematical and General, 37 (2004), 161-208. doi: 10.1088/0305-4470/37/31/R01.

[21]

E. NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[22]

A. de PabloF. QuirósA. Rodriguez and J. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), 1378-1409. doi: 10.1016/j.aim.2010.07.017.

[23]

A. de PabloF. QuirósA. Rodriguez and J. Vázquez, A general fractional porous medium equation, Comm. Pure Applied Math., 65 (2012), 1242-1284. doi: 10.1002/cpa.21408.

[24]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.

[25]

J. Simon, Compact sets in the space Lp(O, T; B), Annali di Matematica Pura ed Applicata, 146 (1987), 65-96.

[26]

R. Song and Z. Vondraček, Potential theory of subordinate killed Brownian motion in a domain, Probab. Theory Relat. Fields, 125 (2003), 578-592. doi: 10.1007/s00440-002-0251-1.

[27]

P. Stinga and J. Torrea, Extension problem and Harnack's inequality for some fractional operators, Commun. Partial Differ. Equ., 35 (2010), 2092-2122. doi: 10.1080/03605301003735680.

[28]

J. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885. doi: 10.3934/dcdss.2014.7.857.

[29]

M. YangC. Sun and C. Zhong, Global attractors for p-Laplacian equation, J. Math. Anal. Appl., 327 (2007), 1130-1142. doi: 10.1016/j.jmaa.2006.04.085.

[30]

X. Zhang, Stochastic lagrangian particle approach to fractal Navier-Stokes equations, Commun. Math. Phys., 311 (2012), 133-155. doi: 10.1007/s00220-012-1414-2.

[31]

C. ZhangJ. Zhang and C. Zhong, Existence of weak solutions for fractional porous medium equations with nonlinear term, Appl. Math. Lett., 61 (2016), 95-101. doi: 10.1016/j.aml.2016.05.001.

[32]

C. ZhongM. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differ. Equ., 223 (2006), 367-399. doi: 10.1016/j.jde.2005.06.008.

[1]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[2]

Brahim Alouini. Long-time behavior of a Bose-Einstein equation in a two-dimensional thin domain. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1629-1643. doi: 10.3934/cpaa.2011.10.1629

[3]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure & Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[4]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

[5]

Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437

[6]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[7]

Linghai Zhang. Long-time asymptotic behaviors of solutions of $N$-dimensional dissipative partial differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1025-1042. doi: 10.3934/dcds.2002.8.1025

[8]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[9]

Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks & Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767

[10]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[11]

Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102

[12]

Belkacem Said-Houari. Long-time behavior of solutions of the generalized Korteweg--de Vries equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 245-252. doi: 10.3934/dcdsb.2016.21.245

[13]

Marcio Antonio Jorge da Silva, Vando Narciso. Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping*. Evolution Equations & Control Theory, 2017, 6 (3) : 437-470. doi: 10.3934/eect.2017023

[14]

Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509

[15]

Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105

[16]

Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873

[17]

Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112

[18]

Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic & Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021

[19]

Yihong Du, Yoshio Yamada. On the long-time limit of positive solutions to the degenerate logistic equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 123-132. doi: 10.3934/dcds.2009.25.123

[20]

Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (123)
  • HTML views (318)
  • Cited by (0)

Other articles
by authors

[Back to Top]