May 2018, 23(3): ⅰ-ⅸ. doi: 10.3934/dcdsb.201803i

In memoriam Igor D. Chueshov September 23, 1951 - April 23, 2016

Universität Bremen, Bremen, Germany

Received  January 2017 Revised  February 2017 Published  February 2018

Citation: Ludwig Arnold. In memoriam Igor D. Chueshov September 23, 1951 - April 23, 2016. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : ⅰ-ⅸ. doi: 10.3934/dcdsb.201803i
References:
[1]

I. D. Chueshov, Monotone Random Systems - Theory and Applications, Springer Lecture Notes in Mathematics, 1779, Springer-Verlag Berlin Heidelberg New York, 2002.

[2]

I. D. Chueshov and I. Lasiecka, Long-time behaviour of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), ⅷ+183 pp.

[3]

I. D. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer Monographs in Mathematics. Springer, New York, 2010.

[4]

I. D. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Universitext. Springer, Cham, 2015.

[5]

I. D. Chueshov, Lectures on Operator Sermigroups, Book in preparation, First Draft February 2015.

show all references

References:
[1]

I. D. Chueshov, Monotone Random Systems - Theory and Applications, Springer Lecture Notes in Mathematics, 1779, Springer-Verlag Berlin Heidelberg New York, 2002.

[2]

I. D. Chueshov and I. Lasiecka, Long-time behaviour of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), ⅷ+183 pp.

[3]

I. D. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer Monographs in Mathematics. Springer, New York, 2010.

[4]

I. D. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Universitext. Springer, Cham, 2015.

[5]

I. D. Chueshov, Lectures on Operator Sermigroups, Book in preparation, First Draft February 2015.

Figure 1.  Igor D. Chueshov, approx. 2000 (Courtesy of Kharkov University)
Figure 2.  Staff of the Department of Mathematical Physics and Numerical Mathematics, Kharkov University, 1980 (Courtesy of Iryna Ryzhkova-Gerasymova)
Figure 3.  Bremen, July 1999
Figure 4.  Dinner with Yuri Latushkin (left), Krishna Athreya, and Birgit Walter, Bremen 1999
Figure 5.  Kharkov 2007 (Courtesy of Iryna Ryzhkova-Gerasymova)
Figure 6.  Kharkov 2012 (Courtesy of Kharkov University)
[1]

Yujun Zhu. Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 869-882. doi: 10.3934/dcds.2014.34.869

[2]

Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067

[3]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[4]

Baowei Feng. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4729-4751. doi: 10.3934/dcds.2017203

[5]

Je-Chiang Tsai. Global exponential stability of traveling waves in monotone bistable systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 601-623. doi: 10.3934/dcds.2008.21.601

[6]

Fuzhong Cong, Jialin Hong, Hongtian Li. Quasi-effective stability for nearly integrable Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 67-80. doi: 10.3934/dcdsb.2016.21.67

[7]

Henri Schurz. Moment attractivity, stability and contractivity exponents of stochastic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 487-515. doi: 10.3934/dcds.2001.7.487

[8]

Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91

[9]

Alexandra Rodkina, Henri Schurz, Leonid Shaikhet. Almost sure stability of some stochastic dynamical systems with memory. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 571-593. doi: 10.3934/dcds.2008.21.571

[10]

Jason S. Howell, Irena Lasiecka, Justin T. Webster. Quasi-stability and exponential attractors for a non-gradient system---applications to piston-theoretic plates with internal damping. Evolution Equations & Control Theory, 2016, 5 (4) : 567-603. doi: 10.3934/eect.2016020

[11]

Ugo Boscain, Grégoire Charlot, Mario Sigalotti. Stability of planar nonlinear switched systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 415-432. doi: 10.3934/dcds.2006.15.415

[12]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[13]

Shengji Li, Chunmei Liao, Minghua Li. Stability analysis of parametric variational systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 317-331. doi: 10.3934/naco.2011.1.317

[14]

J.E. Muñoz Rivera, Reinhard Racke. Global stability for damped Timoshenko systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1625-1639. doi: 10.3934/dcds.2003.9.1625

[15]

Gregory Berkolaiko, Cónall Kelly, Alexandra Rodkina. Sharp pathwise asymptotic stability criteria for planar systems of linear stochastic difference equations. Conference Publications, 2011, 2011 (Special) : 163-173. doi: 10.3934/proc.2011.2011.163

[16]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[17]

Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301

[18]

Fuke Wu, Xuerong Mao, Peter E. Kloeden. Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 885-903. doi: 10.3934/dcds.2013.33.885

[19]

S.Durga Bhavani, K. Viswanath. A general approach to stability and sensitivity in dynamical systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 131-140. doi: 10.3934/dcds.1998.4.131

[20]

Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (126)
  • HTML views (679)
  • Cited by (0)

Other articles
by authors

[Back to Top]