• Previous Article
    Global Hopf bifurcations of neutral functional differential equations with state-dependent delay
  • DCDS-B Home
  • This Issue
  • Next Article
    Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction
March  2018, 23(2): 701-729. doi: 10.3934/dcdsb.2018039

Cascades of alternating smooth bifurcations and border collision bifurcations with singularity in a family of discontinuous linear-power maps

1. 

Department of Economics, Society and Politics, University of Urbino, via Saffi 42,61029 Urbino (PU), Italy

2. 

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran, Azadi St., Tehran, P.O.Box 11365-11155, Iran

3. 

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivska st., 01601 Kyiv, Ukraine

* Corresponding author: Laura Gardini

Received  September 2016 Revised  March 2017 Published  December 2017

We investigate the dynamics of a family of one-dimensional linear-power maps. This family has been studied by many authors mainly in the continuous case, associated with Nordmark systems. In the discontinuous case, which is much less studied, the map has vertical and horizontal asymptotes giving rise to new kinds of border collision bifurcations. We explain a mechanism of the interplay between smooth bifurcations and border collision bifurcations with singularity, leading to peculiar sequences of attracting cycles of periods $n,2n$, $4n-1$, $2(4n-1)$, ..., $n≥3$. We show also that the transition from invertible to noninvertible map may lead abruptly to chaos, and the role of organizing center in the parameter space is played by a particular bifurcation point related to this transition and to a flip bifurcation. Robust unbounded chaotic attractors characteristic for certain parameter ranges are also described. We provide proofs of some properties of the considered map. However, the complete description of its rich bifurcation structure is still an open problem.

Citation: Laura Gardini, Roya Makrooni, Iryna Sushko. Cascades of alternating smooth bifurcations and border collision bifurcations with singularity in a family of discontinuous linear-power maps. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 701-729. doi: 10.3934/dcdsb.2018039
References:
[1]

F. Angulo and M. di Bernardo, Feedback control of limit cycles: A switching control strategy based on nonsmooth bifurcation theory, IEEE Transactions on Circuits and Systems-I, 52 (2005), 366-378. doi: 10.1109/TCSI.2004.841595. Google Scholar

[2]

V. AvrutinI. Sushko and L. Gardini, Cyclicity of chaotic attractors in one-dimensional discontinuous maps, Mathematics and Computers in Simulation, 95 (2014), 126-136. doi: 10.1016/j.matcom.2012.07.019. Google Scholar

[3]

V. AvrutinP. S. DuttaM. Schanz and S. Banerjee, Influence of a square-root singularity on the behaviour of piecewise smooth maps, Nonlinearity, 23 (2010), 445-463. doi: 10.1088/0951-7715/23/2/012. Google Scholar

[4]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sciences 163, Springer-Verlag, London, 2008. Google Scholar

[5]

M. di BernardoC. Budd and A. Champneys, Grazing, skipping and sliding: Analysis of the non-smooth dynamics of the dc-dc buck converter, Nonlinearity, 11 (1998), 859-890. doi: 10.1088/0951-7715/11/4/007. Google Scholar

[6]

M. di BernardoC. J. Budd and A. R. Champneys, Corner collision implies border-collision bifurcation, Physica D, 154 (2001), 171-194. doi: 10.1016/S0167-2789(01)00250-0. Google Scholar

[7]

M. di BernardoP. Kowalczyk and A. B. Nordmark, Bifurcations of dynamical systems with sliding: Derivation of normal-form mappings, Physica D, 170 (2002), 175-205. doi: 10.1016/S0167-2789(02)00547-X. Google Scholar

[8]

G.I. BischiC. Mira and L. Gardini, Unbounded sets of attraction, International Journal of Bifurcation and Chaos, 10 (2000), 1437-1469. doi: 10.1142/S0218127400000980. Google Scholar

[9]

H. Dankowicz and A. B. Nordmark, On the origin and bifurcations of stick-slip oscillations, Physica D, 136 (2000), 280-302. doi: 10.1016/S0167-2789(99)00161-X. Google Scholar

[10]

L. GardiniI. SushkoV. Avrutin and M. Schanz, Critical homoclinic orbits lead to snap-back repellers, Chaos Solitons Fractals, 44 (2011), 433-449. doi: 10.1016/j.chaos.2011.03.004. Google Scholar

[11]

C. HalseM. Homer and M. di Bernardo, C-bifurcations and period-adding in one-dimensional piecewise-smooth maps, Chaos, Solitons Fractals, 18 (2003), 953-976. doi: 10.1016/S0960-0779(03)00066-3. Google Scholar

[12]

M. Jakobson, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Commun Math Phys, 81 (1981), 39-88. doi: 10.1007/BF01941800. Google Scholar

[13]

A. KumarS. Banerjee and D. P. Lathrop, Dynamics of a piecewise smooth map with singularity, Physics Letters A, 337 (2005), 87-92. doi: 10.1016/j.physleta.2005.01.046. Google Scholar

[14]

Y. L. MaistrenkoV. L. Maistrenko and L. O. Chua, Cycles of chaotic intervals in a time-delayed Chua's circuit, Int. J. Bifurcat. Chaos, 3 (1993), 1557-1572. doi: 10.1142/S0218127493001215. Google Scholar

[15]

R. Makrooni and L. Gardini, Bifurcation Structures in a Family of One-Dimensional LinearPower Discontinuous Maps, Gecomplexity Discussion Paper N. 7,2015, ISSN: 2409–7497. http://econpapers.repec.org/paper/cstwpaper/Google Scholar

[16]

R. MakrooniN. AbbasiM. Pourbarat and L. Gardini, Robust unbounded chaotic attractors in 1D discontinuous maps, Chaos, Solitons Fractals, 77 (2015), 310-318. doi: 10.1016/j.chaos.2015.06.012. Google Scholar

[17]

R. MakrooniF. Khellat and L. Gardini, Border collision and fold bifurcations in a family of piecesiwe smooth maps. Part Ⅰ: Unbounded chaotic sets, J. Difference Equ. Appl., 21 (2015), 660-695. doi: 10.1080/10236198.2015.1045893. Google Scholar

[18]

R. MakrooniF. Khellat and L. Gardini, Border collision and fold bifurcations in a family of piecesiwe smooth maps: divergence and bounded dynamics, J. Difference Equ. Appl., 21 (2015), 791-824. doi: 10.1080/10236198.2015.1046855. Google Scholar

[19]

R. MakrooniL. Gardini and I. Sushko, Bifurcation structures in a family of 1D discontinuos linear-hyperbolic invertible maps, Int. J. Bifurcation and Chaos, 25 (2015), 1530039 (21 pages). doi: 10.1142/S0218127415300396. Google Scholar

[20]

N. MetropolisM. L. Stein and P. R. Stein, On finite limit sets for transformations on the unit interval, J Comb Theory, 15 (1973), 25-44. doi: 10.1016/0097-3165(73)90033-2. Google Scholar

[21]

A. B. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillator, Journal of Sound and Vibration, 145 (1991), 279-297. doi: 10.1016/0022-460X(91)90592-8. Google Scholar

[22]

A. B. Nordmark, Universal limit mapping in grazing bifurcations, Physical Review E, 55 (1997), 266-270. doi: 10.1103/PhysRevE.55.266. Google Scholar

[23]

A. B. Nordmark, Existence of priodic orbits in grazing bifurcations of impacting mechanical oscillators, Nonlinearity, 14 (2001), 1517-1542. doi: 10.1088/0951-7715/14/6/306. Google Scholar

[24]

H. E. Nusse and J. A. Yorke, Border-collision bifurcations including period two to period three for piecewise smooth systems, Physica D, 57 (1992), 39-57. doi: 10.1016/0167-2789(92)90087-4. Google Scholar

[25]

H. E. Nusse and J. A. Yorke, Border-collision bifurcation for piecewise smooth one-dimensional maps, Int. J. Bifurcation Chaos, 5 (1995), 189-207. doi: 10.1142/S0218127495000156. Google Scholar

[26]

H. NusseE. Ott and J. Yorke, Border collision bifurcations: An explanation for observed bifurcation phenomena, Phys. Rev. E, 49 (1994), 1073-1076. doi: 10.1103/PhysRevE.49.1073. Google Scholar

[27]

Z. QinJ. YangS. Banerjee and G. Jiang, Border collision bifurcations in a generalized piecewise linear-power map, Discrete and Continuous Dynamical System, Series B, 16 (2011), 547-567. doi: 10.3934/dcdsb.2011.16.547. Google Scholar

[28]

Z. QinZ. YuejingJ. Yang and Y. Jichen, Nonsmooth and smooth bifurcations in a discontinuous piecewise map, Int. J. Bifurcation and Chaos, 22 (2012), 1250112 (7 pages). doi: 10.1142/S021812741250112X. Google Scholar

[29]

W. T. ShiC. L. Gooderidge and D. P. Lathrop, Viscous effects in droplet-ejecting capillary waves, Phys. Rev. E, 56 (1997), 41-57. Google Scholar

[30]

I. SushkoA. Agliari and L. Gardini, Bistability and bifurcation curves for a unimodal piecewise smooth map, Discrete and Continuous Dynamical Systems, Serie B, 5 (2005), 881-897. doi: 10.3934/dcdsb.2005.5.881. Google Scholar

[31]

I. SushkoA. Agliari and L. Gardini, Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: border-collision bifurcation curves, Chaos Solitons Fractals, 29 (2006), 756-770. doi: 10.1016/j.chaos.2005.08.107. Google Scholar

[32]

I. Sushko and L. Gardini, Degenerate bifurcations and border collisions in piecewise smooth 1D and 2D maps, Int. J. Bif. and Chaos, 20 (2010), 2045-2070. doi: 10.1142/S0218127410026927. Google Scholar

[33]

I. SushkoL. Gardini and K. Matsuyama, Superstable credit cycles and U-sequence, Chaos Solitons Fractals, 59 (2014), 13-27. doi: 10.1016/j.chaos.2013.11.006. Google Scholar

[34]

I. SushkoV. Avrutin and L. Gardini, Bifurcation structure in the skew tent map and its application as a border collision normal form, Journal of Difference Equations and Applications, 22 (2016), 582-629. doi: 10.1080/10236198.2015.1113273. Google Scholar

[35]

H. Thunberg, Periodicity versus chaos in one-dimensional dynamics, SIAM Rev, 43 (2001), 3-30. doi: 10.1137/S0036144500376649. Google Scholar

[36]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, SpringerVerlag, New York, 2003. Google Scholar

show all references

References:
[1]

F. Angulo and M. di Bernardo, Feedback control of limit cycles: A switching control strategy based on nonsmooth bifurcation theory, IEEE Transactions on Circuits and Systems-I, 52 (2005), 366-378. doi: 10.1109/TCSI.2004.841595. Google Scholar

[2]

V. AvrutinI. Sushko and L. Gardini, Cyclicity of chaotic attractors in one-dimensional discontinuous maps, Mathematics and Computers in Simulation, 95 (2014), 126-136. doi: 10.1016/j.matcom.2012.07.019. Google Scholar

[3]

V. AvrutinP. S. DuttaM. Schanz and S. Banerjee, Influence of a square-root singularity on the behaviour of piecewise smooth maps, Nonlinearity, 23 (2010), 445-463. doi: 10.1088/0951-7715/23/2/012. Google Scholar

[4]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sciences 163, Springer-Verlag, London, 2008. Google Scholar

[5]

M. di BernardoC. Budd and A. Champneys, Grazing, skipping and sliding: Analysis of the non-smooth dynamics of the dc-dc buck converter, Nonlinearity, 11 (1998), 859-890. doi: 10.1088/0951-7715/11/4/007. Google Scholar

[6]

M. di BernardoC. J. Budd and A. R. Champneys, Corner collision implies border-collision bifurcation, Physica D, 154 (2001), 171-194. doi: 10.1016/S0167-2789(01)00250-0. Google Scholar

[7]

M. di BernardoP. Kowalczyk and A. B. Nordmark, Bifurcations of dynamical systems with sliding: Derivation of normal-form mappings, Physica D, 170 (2002), 175-205. doi: 10.1016/S0167-2789(02)00547-X. Google Scholar

[8]

G.I. BischiC. Mira and L. Gardini, Unbounded sets of attraction, International Journal of Bifurcation and Chaos, 10 (2000), 1437-1469. doi: 10.1142/S0218127400000980. Google Scholar

[9]

H. Dankowicz and A. B. Nordmark, On the origin and bifurcations of stick-slip oscillations, Physica D, 136 (2000), 280-302. doi: 10.1016/S0167-2789(99)00161-X. Google Scholar

[10]

L. GardiniI. SushkoV. Avrutin and M. Schanz, Critical homoclinic orbits lead to snap-back repellers, Chaos Solitons Fractals, 44 (2011), 433-449. doi: 10.1016/j.chaos.2011.03.004. Google Scholar

[11]

C. HalseM. Homer and M. di Bernardo, C-bifurcations and period-adding in one-dimensional piecewise-smooth maps, Chaos, Solitons Fractals, 18 (2003), 953-976. doi: 10.1016/S0960-0779(03)00066-3. Google Scholar

[12]

M. Jakobson, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Commun Math Phys, 81 (1981), 39-88. doi: 10.1007/BF01941800. Google Scholar

[13]

A. KumarS. Banerjee and D. P. Lathrop, Dynamics of a piecewise smooth map with singularity, Physics Letters A, 337 (2005), 87-92. doi: 10.1016/j.physleta.2005.01.046. Google Scholar

[14]

Y. L. MaistrenkoV. L. Maistrenko and L. O. Chua, Cycles of chaotic intervals in a time-delayed Chua's circuit, Int. J. Bifurcat. Chaos, 3 (1993), 1557-1572. doi: 10.1142/S0218127493001215. Google Scholar

[15]

R. Makrooni and L. Gardini, Bifurcation Structures in a Family of One-Dimensional LinearPower Discontinuous Maps, Gecomplexity Discussion Paper N. 7,2015, ISSN: 2409–7497. http://econpapers.repec.org/paper/cstwpaper/Google Scholar

[16]

R. MakrooniN. AbbasiM. Pourbarat and L. Gardini, Robust unbounded chaotic attractors in 1D discontinuous maps, Chaos, Solitons Fractals, 77 (2015), 310-318. doi: 10.1016/j.chaos.2015.06.012. Google Scholar

[17]

R. MakrooniF. Khellat and L. Gardini, Border collision and fold bifurcations in a family of piecesiwe smooth maps. Part Ⅰ: Unbounded chaotic sets, J. Difference Equ. Appl., 21 (2015), 660-695. doi: 10.1080/10236198.2015.1045893. Google Scholar

[18]

R. MakrooniF. Khellat and L. Gardini, Border collision and fold bifurcations in a family of piecesiwe smooth maps: divergence and bounded dynamics, J. Difference Equ. Appl., 21 (2015), 791-824. doi: 10.1080/10236198.2015.1046855. Google Scholar

[19]

R. MakrooniL. Gardini and I. Sushko, Bifurcation structures in a family of 1D discontinuos linear-hyperbolic invertible maps, Int. J. Bifurcation and Chaos, 25 (2015), 1530039 (21 pages). doi: 10.1142/S0218127415300396. Google Scholar

[20]

N. MetropolisM. L. Stein and P. R. Stein, On finite limit sets for transformations on the unit interval, J Comb Theory, 15 (1973), 25-44. doi: 10.1016/0097-3165(73)90033-2. Google Scholar

[21]

A. B. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillator, Journal of Sound and Vibration, 145 (1991), 279-297. doi: 10.1016/0022-460X(91)90592-8. Google Scholar

[22]

A. B. Nordmark, Universal limit mapping in grazing bifurcations, Physical Review E, 55 (1997), 266-270. doi: 10.1103/PhysRevE.55.266. Google Scholar

[23]

A. B. Nordmark, Existence of priodic orbits in grazing bifurcations of impacting mechanical oscillators, Nonlinearity, 14 (2001), 1517-1542. doi: 10.1088/0951-7715/14/6/306. Google Scholar

[24]

H. E. Nusse and J. A. Yorke, Border-collision bifurcations including period two to period three for piecewise smooth systems, Physica D, 57 (1992), 39-57. doi: 10.1016/0167-2789(92)90087-4. Google Scholar

[25]

H. E. Nusse and J. A. Yorke, Border-collision bifurcation for piecewise smooth one-dimensional maps, Int. J. Bifurcation Chaos, 5 (1995), 189-207. doi: 10.1142/S0218127495000156. Google Scholar

[26]

H. NusseE. Ott and J. Yorke, Border collision bifurcations: An explanation for observed bifurcation phenomena, Phys. Rev. E, 49 (1994), 1073-1076. doi: 10.1103/PhysRevE.49.1073. Google Scholar

[27]

Z. QinJ. YangS. Banerjee and G. Jiang, Border collision bifurcations in a generalized piecewise linear-power map, Discrete and Continuous Dynamical System, Series B, 16 (2011), 547-567. doi: 10.3934/dcdsb.2011.16.547. Google Scholar

[28]

Z. QinZ. YuejingJ. Yang and Y. Jichen, Nonsmooth and smooth bifurcations in a discontinuous piecewise map, Int. J. Bifurcation and Chaos, 22 (2012), 1250112 (7 pages). doi: 10.1142/S021812741250112X. Google Scholar

[29]

W. T. ShiC. L. Gooderidge and D. P. Lathrop, Viscous effects in droplet-ejecting capillary waves, Phys. Rev. E, 56 (1997), 41-57. Google Scholar

[30]

I. SushkoA. Agliari and L. Gardini, Bistability and bifurcation curves for a unimodal piecewise smooth map, Discrete and Continuous Dynamical Systems, Serie B, 5 (2005), 881-897. doi: 10.3934/dcdsb.2005.5.881. Google Scholar

[31]

I. SushkoA. Agliari and L. Gardini, Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: border-collision bifurcation curves, Chaos Solitons Fractals, 29 (2006), 756-770. doi: 10.1016/j.chaos.2005.08.107. Google Scholar

[32]

I. Sushko and L. Gardini, Degenerate bifurcations and border collisions in piecewise smooth 1D and 2D maps, Int. J. Bif. and Chaos, 20 (2010), 2045-2070. doi: 10.1142/S0218127410026927. Google Scholar

[33]

I. SushkoL. Gardini and K. Matsuyama, Superstable credit cycles and U-sequence, Chaos Solitons Fractals, 59 (2014), 13-27. doi: 10.1016/j.chaos.2013.11.006. Google Scholar

[34]

I. SushkoV. Avrutin and L. Gardini, Bifurcation structure in the skew tent map and its application as a border collision normal form, Journal of Difference Equations and Applications, 22 (2016), 582-629. doi: 10.1080/10236198.2015.1113273. Google Scholar

[35]

H. Thunberg, Periodicity versus chaos in one-dimensional dynamics, SIAM Rev, 43 (2001), 3-30. doi: 10.1137/S0036144500376649. Google Scholar

[36]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, SpringerVerlag, New York, 2003. Google Scholar

Figure 1.  2D bifurcation diagrams of $f$ in the $(a, S(b))$-parameter plane, where $S(b) = \arctan (b)$, for $\gamma = 0.5 $ in (a) and $\gamma = 1.5$ in (b); striped regions are related to coexistence, colored regions to attracting cycles of different periods, uncolored regions to attracting cycles of higher periods or chaotic attractors, grey regions to divergence. In (c) examples of map $f$ are shown
Figure 2.  Bifurcation diagrams $a$ vs $S(x) $ at $b = -5$, where $S(x) = \arctan (x)$. In (a) $\gamma = 0.5, $ in (b) $\gamma = 2$ and in (c) $\gamma = 1$, associated with the subcritical, supercritical and degenerate flip bifurcations of the 2-cycle $LR$, respectively
Figure 3.  Graph of map $g(x)$ given in (21). In (a): $a = -1.3$, $b = 1.5$ and $\gamma = 0.5<1;$ in (b) $a = -1.7$, $b = 10$ and $\gamma = 1.5>1$
Figure 4.  2D bifurcation diagrams of map $f$ in the $(a, b)$-parameter plane for $\gamma = 1.5$ in (a) and $\gamma = 3$ in (b)
Figure 5.  Maps $g(x)$ and $g^{2}(x)$ at $a = -1.7$, $b = 10$ and $\gamma = 1.5$. In the right panel the generic case starting a period doubling sequence is schematically shown
Figure 6.  Attracting 4-cycle $(ML)^{2}$ of map $g(x)$ corresponding to the 6-cycle $R^{2}LR^{2}L$ of map $f(x)$. The cycle is close to its border collision. In (b) the enlargement of the small rectangle indicated in (a). Here $a = -2.155$, $b = 10$, $\gamma = 1.5.$
Figure 7.  In (a), repelling 4-cycle $ML^{3}$ of map $g$ corresponding to the repelling 5-cycle $R^{2}L^{3}$ of map $f.$ In (b), the enlargement of the small rectangle marked in (a), which shows also the graph of $g^{8}(x)$ with an attracting 8-cycle $L^{2}(LM)^{3}$ of map $g$ corresponding to the attracting 11-cycle $L^{2}(LR^{2})^{3}$ of map $f.$ Here $a = -2.16$, $b = 10$, $\gamma = 1.5.$
Figure 8.  Qualitative representation of the S-fold and BCBs of map $g^{n}$ in a neighborhood of $x = 0, $ in all the possible cases, showing the shape of $g^{n}$ at the bifurcation and after: In (a) a fold-BCB; in (b) an S-fold, related to a local maximum of $g^{n}$ in $x = 0;$ in (c) a fold-BCB; in (d) an S-fold, related to a local minimum of $g^{n}$ in $x = 0.$
Figure 9.  In (a): fold-BCB leading to a pair of 3-cycles of map $g$; In (b): fold-BCB leading to a pair of 4-cycles of map $g$. Here $a = -2.5$, $b = 10$, $\gamma = 1.5.$
Figure 10.  1D bifurcation diagram as a function of $a$ at $b = 4$, $\gamma = 1.5$ for map $g$ in (a), and for map $f$ in (b). The values of $x$ are scaled as $y = \arctan (x)$ in order to show the values tending to $+\infty $
Figure 11.  Fold bifurcation of the pair of 2-cycles $LR$ at $a = -3$, $\gamma = 1.5 $ and $b = 0.35$ in (a), $b = 0.2$ in (b)
Figure 12.  1D bifurcation diagram of map $f$ as a function of $a$ at fixed $b = 1.9$ and $\gamma = 0.5.$ The variable $x$ is scaled by $y = \arctan (x)$. In (b) an enlargement of (a) is shown for $-1.1<a<-1$
Figure 13.  Graphs of map $g(x)$ at $\gamma = 0.5$ and $b = 0.5<b_{R}^{f}$. In (a) $a = -1.1$; in (b) $a = -2$; in (c) $a = -4.5.$
Figure 14.  Graphs of map $g$ at $\gamma = 0.5$ and $b = 2.2>b_{R}^{f}$. In (a) $a = -1.2$; in (b) $a = -1.6.$ The fixed point is the unique attractor
[1]

Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure & Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493

[2]

Iryna Sushko, Anna Agliari, Laura Gardini. Bistability and border-collision bifurcations for a family of unimodal piecewise smooth maps. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 881-897. doi: 10.3934/dcdsb.2005.5.881

[3]

Zhiying Qin, Jichen Yang, Soumitro Banerjee, Guirong Jiang. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 547-567. doi: 10.3934/dcdsb.2011.16.547

[4]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[5]

Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457

[6]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

[7]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[8]

Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362

[9]

Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685

[10]

Michael Hochman. Smooth symmetries of $\times a$-invariant sets. Journal of Modern Dynamics, 2018, 13: 187-197. doi: 10.3934/jmd.2018017

[11]

Thorsten Hüls. A model function for non-autonomous bifurcations of maps. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 351-363. doi: 10.3934/dcdsb.2007.7.351

[12]

Yong Fang. On smooth conjugacy of expanding maps in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 687-697. doi: 10.3934/dcds.2011.30.687

[13]

Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012

[14]

Vincent Naudot, Jiazhong Yang. Finite smooth normal forms and integrability of local families of vector fields. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 667-682. doi: 10.3934/dcdss.2010.3.667

[15]

Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1

[16]

Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381

[17]

D. J. W. Simpson, R. Kuske. Stochastically perturbed sliding motion in piecewise-smooth systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2889-2913. doi: 10.3934/dcdsb.2014.19.2889

[18]

Simone Creo, Maria Rosaria Lancia, Alexander Nazarov, Paola Vernole. On two-dimensional nonlocal Venttsel' problems in piecewise smooth domains. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 57-64. doi: 10.3934/dcdss.2019004

[19]

Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189

[20]

N. Chernov. Statistical properties of piecewise smooth hyperbolic systems in high dimensions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 425-448. doi: 10.3934/dcds.1999.5.425

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (51)
  • HTML views (199)
  • Cited by (0)

Other articles
by authors

[Back to Top]