• Previous Article
    Some remarks on the homogenization of immiscible incompressible two-phase flow in double porosity media
  • DCDS-B Home
  • This Issue
  • Next Article
    Cascades of alternating smooth bifurcations and border collision bifurcations with singularity in a family of discontinuous linear-power maps
March 2018, 23(2): 667-700. doi: 10.3934/dcdsb.2018038

Global Hopf bifurcations of neutral functional differential equations with state-dependent delay

1. 

College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China

2. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

3. 

School of Science, Tianjin Polytechnic University, Tianjin 300387, China

* Corresponding author: Xiuli Sun

The second author is supported by NSFC grant No.11371058 and the Fundament Research Funds for the Central University. The third author is supported by NSFC grant No.11501409

Received  July 2016 Revised  September 2017 Published  December 2017

A global Hopf bifurcation theory for a system of neutral functional differential equations (NFDEs) with state-dependent delay is investigated by applying the $S^{1}$-equivariant degree theory. We use the information about the characteristic equation of the formal linearization with frozen delay to detect the local Hopf bifurcation and to describe the global continuation of periodic solutions for such a system. The results are important in studying bifurcations of NFDEs with state-dependent delay.

Citation: Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038
References:
[1]

W. G. AielloH. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52 (1992), 855-869. doi: 10.1137/0152048.

[2]

J. F. M. Al-Omari and S. A. Gourley, Dynamics of a stage-structured population model incorporating a state-dependent maturation delay, Nonlinear Anal. Real World Appl., 6 (2005), 13-33. doi: 10.1016/j.nonrwa.2004.04.002.

[3]

O. ArinoM. L. Hbid and R. Bravo de la Parra, A mathematical model of growth of population of fish in the larval stage: density-dependence effects, Math. Biosci., 150 (1998), 1-20. doi: 10.1016/S0025-5564(98)00008-X.

[4]

O. Arino and E. S$\acute{a}$nchez, Delays included in population dynamics, in: Mathematical Modeling of Population Dynamics, Banach Center Publ., 63 (2004), 9–46.

[5]

O. ArinoE. S$\acute{a}$nchez and A. Fathallah, State-dependent delay differential equations in population dynamics: Modeling and analysis, Fields Inst. Commun., 29 (2001), 19-36.

[6]

Z. BalanovQ. W. Hu and W. Krawcewicz, Global Hopf bifurcation of differential equations with threshold type state-dependent delay, J. Differential Equations, 257 (2014), 2622-2670. doi: 10.1016/j.jde.2014.05.053.

[7]

R. K. Brayton, Bifurcations of periodic solutions in a nonlinear difference-differential equation of neutral type, Quarterly Appl. Math., 24 (1966), 215-224. doi: 10.1090/qam/204800.

[8]

R. K. Brayton, Nonlinear oscillations in a distributed network, Quaterly Appl. Math., 24 (1967), 289-301. doi: 10.1090/qam/99914.

[9]

Y. L. CaoJ. P. Fan and T. C. Gard, The effect of state-dependent delay on a stage-structured population growth model, Nonlinear Anal.-Theor., 19 (1992), 95-105. doi: 10.1016/0362-546X(92)90113-S.

[10]

S. N. Chow and J. Mallet-Paret, The Fuller index and global Hopf bifurcation, J. Differential Equations, 29 (1978), 66-85. doi: 10.1016/0022-0396(78)90041-4.

[11]

K. Gopalsamy and B. G. Zhang, On a neutral delay logistic equation, Dynam. Stabil. Syst., 2 (1987), 183-195.

[12]

S. J. Guo and J. S. W. Lamb, Equivariant Hopf bifurcation for neutral functional differential equations, Proc. Amer. Math. Soc., 136 (2008), 2031-2041. doi: 10.1090/S0002-9939-08-09280-0.

[13]

J. K. Hale, Theory of Functional Differential Equations, 2 $^{nd}$, Springer-Verlag, New York-Heidelberg, 1977.

[14]

Q. W. Hu and J. H. Wu, Global Hopf bifurcation for differential equations with state-dependent delay, J. Differential Equations, 248 (2010), 2801-2840. doi: 10.1016/j.jde.2010.03.020.

[15]

Q. W. Hu and J. H. Wu, Global continua of rapidly oscillating periodic solutions of state-dependent delay differential equations, J. Dynam. Differential Equations, 22 (2010), 253-284. doi: 10.1007/s10884-010-9162-5.

[16]

G. S. Jones, On the nonlinear differential-difference equation $f'(x) = -α f(x-1)[1+f(x)]$, J Math. Anal. Appl., 4 (1962), 440-469. doi: 10.1016/0022-247X(62)90041-0.

[17]

G. S. Jones, The existence of periodic solutions of $f'(x) = -α f(x-1)[1+f(x)]$, J. Math. Anal. Appl., 5 (1962), 435-450.

[18]

G. S. Jones, Periodic motions in Banach space and applications to functional-differential equations, Contrib. Diff. Eqns., 3 (1964), 75-106.

[19]

W. Krawcewicz and J. H. Wu, Theory of Degrees with Applications to Bifurcations and Differential Equations, Wiley-Interscience, John Wiley & Sons, Inc., New York, 1997.

[20]

Y. Kuang, On neutral-delay two-species Lotka-Volterra competitive systems, J. Austral. Math. Soc. Ser. B, 32 (1991), 311-326. doi: 10.1017/S0334270000006895.

[21]

S. Lang, Real and Functional Analysis, 3 $^{nd}$, edition Springer-Verlag, New York, 1993.

[22]

O. Lopes, Forced oscillations in nonlinear neutral differential equations, SIAM J. Appl. Math., 29 (1975), 196-207. doi: 10.1137/0129017.

[23]

J. Mallet-ParetR. Nussbaum and P. Paraskevopoulos, Periodic solutions for functional-differential equations with multiple state-dependent time lags, Topol. Methods Nonlinear Anal., 3 (1994), 101-162. doi: 10.12775/TMNA.1994.006.

[24]

R. D. Nussbaum, A global bifurcation theorem with application to functional differential equations, J. Funct. Anal., 19 (1975), 319-338. doi: 10.1016/0022-1236(75)90061-0.

[25]

R. D. Nussbaum, Global bifurcation of periodic solutions of some autonomous functional differential equations, J. Math. Anal. Appl., 55 (1976), 699-725. doi: 10.1016/0022-247X(76)90076-7.

[26]

R. D. Nussbaum, A Hopf global bifurcation theorem for retarded functional differential equations, Trans. Amer. Math. Sot., 238 (1978), 139-164. doi: 10.1090/S0002-9947-1978-0482913-0.

[27]

E. C. Pielou, Mathematical Ecology, 2$^{nd}$, edition, Wiley Interscience, New York, 1977.

[28]

S. Rai and R. L. Robertson, Analysis of a two-stage population model with space limitations and state-dependent delay, Canad. Appl. Math. Quart., 8 (2000), 263-279.

[29]

S. Rai and R. L. Robertson, A stage-structured population model with state-dependent delay, Int. J. Differ. Equ. Appl., 6 (2002), 77-91.

[30]

F. E. Smith, Population dynamics in Daphnia magna and a new model for population growth, Ecology, 44 (1963), 651-663. doi: 10.2307/1933011.

[31]

H. Smith, Hopf bifurcation in a system of functional equations modelling the spread of infectious disease, SIAM J. Appl. Math., 43 (1983), 370-385. doi: 10.1137/0143025.

[32]

G. Vidossich, On the structure of periodic solutions of differential equations, J. Differential Equations, 21 (1976), 263-278. doi: 10.1016/0022-0396(76)90122-4.

[33]

J. H. Wu, Global continua of periodic solutions to some difference-differential equations of neutral type, Tohoku Math. J., 45 (1993), 67-88. doi: 10.2748/tmj/1178225955.

show all references

References:
[1]

W. G. AielloH. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52 (1992), 855-869. doi: 10.1137/0152048.

[2]

J. F. M. Al-Omari and S. A. Gourley, Dynamics of a stage-structured population model incorporating a state-dependent maturation delay, Nonlinear Anal. Real World Appl., 6 (2005), 13-33. doi: 10.1016/j.nonrwa.2004.04.002.

[3]

O. ArinoM. L. Hbid and R. Bravo de la Parra, A mathematical model of growth of population of fish in the larval stage: density-dependence effects, Math. Biosci., 150 (1998), 1-20. doi: 10.1016/S0025-5564(98)00008-X.

[4]

O. Arino and E. S$\acute{a}$nchez, Delays included in population dynamics, in: Mathematical Modeling of Population Dynamics, Banach Center Publ., 63 (2004), 9–46.

[5]

O. ArinoE. S$\acute{a}$nchez and A. Fathallah, State-dependent delay differential equations in population dynamics: Modeling and analysis, Fields Inst. Commun., 29 (2001), 19-36.

[6]

Z. BalanovQ. W. Hu and W. Krawcewicz, Global Hopf bifurcation of differential equations with threshold type state-dependent delay, J. Differential Equations, 257 (2014), 2622-2670. doi: 10.1016/j.jde.2014.05.053.

[7]

R. K. Brayton, Bifurcations of periodic solutions in a nonlinear difference-differential equation of neutral type, Quarterly Appl. Math., 24 (1966), 215-224. doi: 10.1090/qam/204800.

[8]

R. K. Brayton, Nonlinear oscillations in a distributed network, Quaterly Appl. Math., 24 (1967), 289-301. doi: 10.1090/qam/99914.

[9]

Y. L. CaoJ. P. Fan and T. C. Gard, The effect of state-dependent delay on a stage-structured population growth model, Nonlinear Anal.-Theor., 19 (1992), 95-105. doi: 10.1016/0362-546X(92)90113-S.

[10]

S. N. Chow and J. Mallet-Paret, The Fuller index and global Hopf bifurcation, J. Differential Equations, 29 (1978), 66-85. doi: 10.1016/0022-0396(78)90041-4.

[11]

K. Gopalsamy and B. G. Zhang, On a neutral delay logistic equation, Dynam. Stabil. Syst., 2 (1987), 183-195.

[12]

S. J. Guo and J. S. W. Lamb, Equivariant Hopf bifurcation for neutral functional differential equations, Proc. Amer. Math. Soc., 136 (2008), 2031-2041. doi: 10.1090/S0002-9939-08-09280-0.

[13]

J. K. Hale, Theory of Functional Differential Equations, 2 $^{nd}$, Springer-Verlag, New York-Heidelberg, 1977.

[14]

Q. W. Hu and J. H. Wu, Global Hopf bifurcation for differential equations with state-dependent delay, J. Differential Equations, 248 (2010), 2801-2840. doi: 10.1016/j.jde.2010.03.020.

[15]

Q. W. Hu and J. H. Wu, Global continua of rapidly oscillating periodic solutions of state-dependent delay differential equations, J. Dynam. Differential Equations, 22 (2010), 253-284. doi: 10.1007/s10884-010-9162-5.

[16]

G. S. Jones, On the nonlinear differential-difference equation $f'(x) = -α f(x-1)[1+f(x)]$, J Math. Anal. Appl., 4 (1962), 440-469. doi: 10.1016/0022-247X(62)90041-0.

[17]

G. S. Jones, The existence of periodic solutions of $f'(x) = -α f(x-1)[1+f(x)]$, J. Math. Anal. Appl., 5 (1962), 435-450.

[18]

G. S. Jones, Periodic motions in Banach space and applications to functional-differential equations, Contrib. Diff. Eqns., 3 (1964), 75-106.

[19]

W. Krawcewicz and J. H. Wu, Theory of Degrees with Applications to Bifurcations and Differential Equations, Wiley-Interscience, John Wiley & Sons, Inc., New York, 1997.

[20]

Y. Kuang, On neutral-delay two-species Lotka-Volterra competitive systems, J. Austral. Math. Soc. Ser. B, 32 (1991), 311-326. doi: 10.1017/S0334270000006895.

[21]

S. Lang, Real and Functional Analysis, 3 $^{nd}$, edition Springer-Verlag, New York, 1993.

[22]

O. Lopes, Forced oscillations in nonlinear neutral differential equations, SIAM J. Appl. Math., 29 (1975), 196-207. doi: 10.1137/0129017.

[23]

J. Mallet-ParetR. Nussbaum and P. Paraskevopoulos, Periodic solutions for functional-differential equations with multiple state-dependent time lags, Topol. Methods Nonlinear Anal., 3 (1994), 101-162. doi: 10.12775/TMNA.1994.006.

[24]

R. D. Nussbaum, A global bifurcation theorem with application to functional differential equations, J. Funct. Anal., 19 (1975), 319-338. doi: 10.1016/0022-1236(75)90061-0.

[25]

R. D. Nussbaum, Global bifurcation of periodic solutions of some autonomous functional differential equations, J. Math. Anal. Appl., 55 (1976), 699-725. doi: 10.1016/0022-247X(76)90076-7.

[26]

R. D. Nussbaum, A Hopf global bifurcation theorem for retarded functional differential equations, Trans. Amer. Math. Sot., 238 (1978), 139-164. doi: 10.1090/S0002-9947-1978-0482913-0.

[27]

E. C. Pielou, Mathematical Ecology, 2$^{nd}$, edition, Wiley Interscience, New York, 1977.

[28]

S. Rai and R. L. Robertson, Analysis of a two-stage population model with space limitations and state-dependent delay, Canad. Appl. Math. Quart., 8 (2000), 263-279.

[29]

S. Rai and R. L. Robertson, A stage-structured population model with state-dependent delay, Int. J. Differ. Equ. Appl., 6 (2002), 77-91.

[30]

F. E. Smith, Population dynamics in Daphnia magna and a new model for population growth, Ecology, 44 (1963), 651-663. doi: 10.2307/1933011.

[31]

H. Smith, Hopf bifurcation in a system of functional equations modelling the spread of infectious disease, SIAM J. Appl. Math., 43 (1983), 370-385. doi: 10.1137/0143025.

[32]

G. Vidossich, On the structure of periodic solutions of differential equations, J. Differential Equations, 21 (1976), 263-278. doi: 10.1016/0022-0396(76)90122-4.

[33]

J. H. Wu, Global continua of periodic solutions to some difference-differential equations of neutral type, Tohoku Math. J., 45 (1993), 67-88. doi: 10.2748/tmj/1178225955.

[1]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[2]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[3]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[4]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[5]

Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993

[6]

Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416

[7]

Zalman Balanov, Meymanat Farzamirad, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree. part II: Symmetric Hopf bifurcations of functional differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 923-960. doi: 10.3934/dcds.2006.16.923

[8]

Hermann Brunner, Stefano Maset. Time transformations for state-dependent delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (1) : 23-45. doi: 10.3934/cpaa.2010.9.23

[9]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[10]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[11]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[12]

Jan Sieber. Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2607-2651. doi: 10.3934/dcds.2012.32.2607

[13]

Gheorghe Tigan. Degenerate with respect to parameters fold-Hopf bifurcations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2115-2140. doi: 10.3934/dcds.2017091

[14]

Igor Chueshov, Alexander V. Rezounenko. Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1685-1704. doi: 10.3934/cpaa.2015.14.1685

[15]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[16]

Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801

[17]

Odo Diekmann, Karolína Korvasová. Linearization of solution operators for state-dependent delay equations: A simple example. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 137-149. doi: 10.3934/dcds.2016.36.137

[18]

Redouane Qesmi, Hans-Otto Walther. Center-stable manifolds for differential equations with state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1009-1033. doi: 10.3934/dcds.2009.23.1009

[19]

Ferenc Hartung. Parameter estimation by quasilinearization in differential equations with state-dependent delays. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1611-1631. doi: 10.3934/dcdsb.2013.18.1611

[20]

Anatoly Neishtadt. On stability loss delay for dynamical bifurcations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 897-909. doi: 10.3934/dcdss.2009.2.897

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (62)
  • HTML views (107)
  • Cited by (0)

Other articles
by authors

[Back to Top]