March 2018, 23(2): 609-628. doi: 10.3934/dcdsb.2018036

Stability of travelling waves in a Wolbachia invasion

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

* Corresponding author: Matthew H. Chan

Received  June 2016 Revised  September 2017 Published  December 2017

Fund Project: PSK was supported by the Australian Research Council, Discovery Project (DP160101597)

Numerous studies have examined the growth dynamics of Wolbachia within populations and the resultant rate of spatial spread. This spread is typically characterised as a travelling wave with bistable local growth dynamics due to a strong Allee effect generated from cytoplasmic incompatibility. While this rate of spread has been calculated from numerical solutions of reaction-diffusion models, none have examined the spectral stability of such travelling wave solutions. In this study we analyse the stability of a travelling wave solution generated by the reaction-diffusion model of Chan & Kim [4] by computing the essential and point spectrum of the linearised operator arising in the model. The point spectrum is computed via an Evans function using the compound matrix method, whereby we find that it has no roots with positive real part. Moreover, the essential spectrum lies strictly in the left half plane. Thus, we find that the travelling wave solution found by Chan & Kim [4] corresponding to competition between Wolbachia-infected and -uninfected mosquitoes is linearly stable. We employ a dimension counting argument to suggest that, under realistic conditions, the wavespeed corresponding to such a solution is unique.

Citation: Matthew H. Chan, Peter S. Kim, Robert Marangell. Stability of travelling waves in a Wolbachia invasion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 609-628. doi: 10.3934/dcdsb.2018036
References:
[1]

L. Allen and T. J. Bridges, Numerical exterior algebra and the compound matrix method, Numerische Mathematik, 92 (2002), 197-232. doi: 10.1007/s002110100365.

[2]

N. H. Barton and M. Turelli, Spatial waves of advance with bistable dynamics: Cytoplasmic and genetic analogues of allee effects, The American Naturalist, 178 (2011), E48-E75.

[3]

C. Brelsfoard and S. Dobson, Short note: an update on the utility of Wolbachia for controlling insect vectors and disease transmission, Asia-Pacific Journal of Molecular Biology and Biotechnology, 19 (2011), 85-92.

[4]

M. H. Chan and P. S. Kim, Modelling a Wolbachia invasion using a slow-fast dispersal reaction-diffusion approach, Bulletin of Mathematical Biology, 75 (2013), 1501-1523. doi: 10.1007/s11538-013-9857-y.

[5]

R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Volume 5. Evolution Problems I, Springer-Verlag, Berlin, 1992.

[6]

A. Davey, An automatic orthonormalization method for solving stiff boundary-value problems, Journal of Computational Physics, 51 (1983), 343-356. doi: 10.1016/0021-9991(83)90098-0.

[7]

L. O. Drury, Numerical solution of Orr-Sommerfeld-type equations, Journal of Computational Physics, 37 (1980), 133-139. doi: 10.1016/0021-9991(80)90008-X.

[8]

P. HancockS. Sinkins and H. Godfray, Population dynamic models of the spread of wolbachia, The American Naturalist, 177 (2011), 323-333.

[9]

P. A. Hancock and H. C. J. Godfray, Modelling the spread of wolbachia in spatially heterogeneous environments, Journal of The Royal Society Interface, 9 (2012), 3045-3054.

[10]

K. HilgenboeckerP. HammersteinP. SchlattmannA. Telschow and J. H. Werren, How many species are infected with wolbachia?-a statistical analysis of current data, FEMS Microbiology Letters, 281 (2008), 215-220.

[11]

C. K. Jones, Stability of the travelling wave solution of the fitzhugh-nagumo system, Transactions of the American Mathematical Society, 286 (1984), 431-469. doi: 10.1090/S0002-9947-1984-0760971-6.

[12]

T. Kapitula and K. Promislow, Spectral and Dynamical Stability of Nonlinear Waves, Applied Mathematical Sciences. Springer New York, 2013.

[13]

M. KeelingF. Jiggins and J. Read, The invasion and coexistence of competing wolbachia strains, Heredity (Edinb), 91 (2003), 382-388.

[14]

V. LedouxS. Malham and V. Thümmler, Grassmannian spectral shooting, Mathematics of Computation, 79 (2010), 1585-1619. doi: 10.1090/S0025-5718-10-02323-9.

[15]

M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms, Theoretical Population Biology, 43 (1993), 141-158.

[16]

C. McmenimanR. LaneB. CassA. FongM. SidhuY. Wang and S. O'Neill, Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti, Science, 323 (2009), 141-144.

[17]

M. Z. NdiiR. I. Hickson and G. N. Mercer, Modelling the introduction of wolbachia into aedes aegypti mosquitoes to reduce dengue transmission, ANZIAM Journal, 53 (2012), 213-227.

[18]

B. S. Ng and W. H. Reid, An initial value method for eigenvalue problems using compound matrices, Journal of Computational Physics, 30 (1979), 125-136. doi: 10.1016/0021-9991(79)90091-3.

[19]

B. S. Ng and W. H. Reid, A numerical method for linear two-point boundary-value problems using compound matrices, Journal of Computational Physics, 33 (1979), 70-85. doi: 10.1016/0021-9991(79)90028-7.

[20]

B. Sandstede and A. Scheel, Absolute and convective instabilities of waves on unbounded and large bounded domains, Physica D: Nonlinear Phenomena, 145 (2000), 233-277. doi: 10.1016/S0167-2789(00)00114-7.

[21]

M. Turelli, Evolution of incompatibility-inducing microbes and their hosts, Evolution, 48 (1994), 1500-1513.

[22]

M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution, 64 (2010), 232-241.

[23]

A. P. Turley, M. P. Zalucki, S. L. O'Neill and E. A. McGraw, Transinfected Wolbachia have minimal effects on male reproductive success in Aedes aegypti, Parasites & Vectors, 6 (2013), p36.

[24]

T. WalkerP. JohnsonL. MoreiraI. Iturbe-OrmaetxeF. FrentiuC. McMenimanY. LeongY. DongJ. AxfordP. KriesnerA. LloydS. RitchieS. O'Neill and A. Hoffmann, The wmel wolbachia strain blocks dengue and invades caged aedes aegypti populations, Nature, 476 (2011), 450-453.

show all references

References:
[1]

L. Allen and T. J. Bridges, Numerical exterior algebra and the compound matrix method, Numerische Mathematik, 92 (2002), 197-232. doi: 10.1007/s002110100365.

[2]

N. H. Barton and M. Turelli, Spatial waves of advance with bistable dynamics: Cytoplasmic and genetic analogues of allee effects, The American Naturalist, 178 (2011), E48-E75.

[3]

C. Brelsfoard and S. Dobson, Short note: an update on the utility of Wolbachia for controlling insect vectors and disease transmission, Asia-Pacific Journal of Molecular Biology and Biotechnology, 19 (2011), 85-92.

[4]

M. H. Chan and P. S. Kim, Modelling a Wolbachia invasion using a slow-fast dispersal reaction-diffusion approach, Bulletin of Mathematical Biology, 75 (2013), 1501-1523. doi: 10.1007/s11538-013-9857-y.

[5]

R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Volume 5. Evolution Problems I, Springer-Verlag, Berlin, 1992.

[6]

A. Davey, An automatic orthonormalization method for solving stiff boundary-value problems, Journal of Computational Physics, 51 (1983), 343-356. doi: 10.1016/0021-9991(83)90098-0.

[7]

L. O. Drury, Numerical solution of Orr-Sommerfeld-type equations, Journal of Computational Physics, 37 (1980), 133-139. doi: 10.1016/0021-9991(80)90008-X.

[8]

P. HancockS. Sinkins and H. Godfray, Population dynamic models of the spread of wolbachia, The American Naturalist, 177 (2011), 323-333.

[9]

P. A. Hancock and H. C. J. Godfray, Modelling the spread of wolbachia in spatially heterogeneous environments, Journal of The Royal Society Interface, 9 (2012), 3045-3054.

[10]

K. HilgenboeckerP. HammersteinP. SchlattmannA. Telschow and J. H. Werren, How many species are infected with wolbachia?-a statistical analysis of current data, FEMS Microbiology Letters, 281 (2008), 215-220.

[11]

C. K. Jones, Stability of the travelling wave solution of the fitzhugh-nagumo system, Transactions of the American Mathematical Society, 286 (1984), 431-469. doi: 10.1090/S0002-9947-1984-0760971-6.

[12]

T. Kapitula and K. Promislow, Spectral and Dynamical Stability of Nonlinear Waves, Applied Mathematical Sciences. Springer New York, 2013.

[13]

M. KeelingF. Jiggins and J. Read, The invasion and coexistence of competing wolbachia strains, Heredity (Edinb), 91 (2003), 382-388.

[14]

V. LedouxS. Malham and V. Thümmler, Grassmannian spectral shooting, Mathematics of Computation, 79 (2010), 1585-1619. doi: 10.1090/S0025-5718-10-02323-9.

[15]

M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms, Theoretical Population Biology, 43 (1993), 141-158.

[16]

C. McmenimanR. LaneB. CassA. FongM. SidhuY. Wang and S. O'Neill, Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti, Science, 323 (2009), 141-144.

[17]

M. Z. NdiiR. I. Hickson and G. N. Mercer, Modelling the introduction of wolbachia into aedes aegypti mosquitoes to reduce dengue transmission, ANZIAM Journal, 53 (2012), 213-227.

[18]

B. S. Ng and W. H. Reid, An initial value method for eigenvalue problems using compound matrices, Journal of Computational Physics, 30 (1979), 125-136. doi: 10.1016/0021-9991(79)90091-3.

[19]

B. S. Ng and W. H. Reid, A numerical method for linear two-point boundary-value problems using compound matrices, Journal of Computational Physics, 33 (1979), 70-85. doi: 10.1016/0021-9991(79)90028-7.

[20]

B. Sandstede and A. Scheel, Absolute and convective instabilities of waves on unbounded and large bounded domains, Physica D: Nonlinear Phenomena, 145 (2000), 233-277. doi: 10.1016/S0167-2789(00)00114-7.

[21]

M. Turelli, Evolution of incompatibility-inducing microbes and their hosts, Evolution, 48 (1994), 1500-1513.

[22]

M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution, 64 (2010), 232-241.

[23]

A. P. Turley, M. P. Zalucki, S. L. O'Neill and E. A. McGraw, Transinfected Wolbachia have minimal effects on male reproductive success in Aedes aegypti, Parasites & Vectors, 6 (2013), p36.

[24]

T. WalkerP. JohnsonL. MoreiraI. Iturbe-OrmaetxeF. FrentiuC. McMenimanY. LeongY. DongJ. AxfordP. KriesnerA. LloydS. RitchieS. O'Neill and A. Hoffmann, The wmel wolbachia strain blocks dengue and invades caged aedes aegypti populations, Nature, 476 (2011), 450-453.

Figure 1.  The essential spectrum of $\mathcal{L}$ is given by $\lambda$ in the shaded regions. The blue dashed and solid lines represent $\lambda_-^{1, 2}$ and $\lambda_+^{1, 2}$ respectively. The red line indicates the absolute spectrum given by Eq. (17) and the red dot at the origin represents an eigenvalue. Note that these are not drawn to scale for visualisation purposes
Figure 2.  The contour $C$
Figure 3.  The image of $C$ under $D(\lambda)$, where $r_s =0.1$ and $r_b =10$
Figure 4.  The image of $C$ under $D(\lambda)$, where $r_s =0.001$ and $r_b =500$
Figure 5.  Plots $(a)$ and $(b)$ show the change in argument for $D[C]$ corresponding to Figures 3 and 4 respectively
Figure 6.  Plot of the Evans function given by Eq. (26). The blue and red solid lines in both plots show $D(\lambda)$ with $\alpha = 1.1$ and $\alpha = 1$ respectively. The dashed lines in plot $(a)$ mark the edge of the absolute spectrum corresponding to each $\alpha$. For $\alpha = 1.1$, the only roots are at $\lambda =0$ and at the edge of the absolute spectrum $\lambda =-0.002607$, whereas for $\alpha = 1$ we were unable to detect a zero at the edge of the absolute spectrum due to its proximity to the origin
Figure 7.  Solution to the boundary value problem (6). Figure $(a)$ shows the wave profile of $\hat{u}(z)$ and $\hat{v}(z)$, represented by solid and dashed lines respectively. Figure $(b)$ shows the heteroclinic connection between equilibrium states $\mathbf{e_{-}} = (1-\alpha \mu, 0)$ and $\mathbf{e_{+}} = (0, 1-\frac{\mu}{F})$, where the solid and dashed line represent the solution in $u-u'$ and $v-v'$ space respectively
Figure 8.  A diagram showing the uniqueness of $c_*$ by dimension counting, where $\tilde{\mathbf{e}}_-$, $\tilde{\mathbf{e}}_+$ denote the equilibria at the end points of the heteroclinic orbit in (33). In the illustration, $W^{u, s}(\tilde{\mathbf{e}}_{-, +}) \times \mathcal{C}_\varepsilon$ are shown as 2-dimensional manifolds which intersect transversally in 3-dimensional space. The one dimensional intersection corresponds to the heteroclinic connection between $\tilde{\mathbf{e}}_-$ and $\tilde{\mathbf{e}}_+$ at $c_*$
Figure 9.  Simulations corresponding to parameter set three, listed in Table 2
Figure 10.  Simulations corresponding to parameter set two, listed in Table 3
Figure 11.  Simulations corresponding to parameter set three, listed in Table 4
Figure 12.  Simulations corresponding to parameter set four, listed in Table 5
Table 1.  Parameter values and definitions
SymbolDefinitionValue
$F$Relative fecundity of uninfected to infected females $1.0526$
$s_h$Probability of embryo death due to CI $0.45$
$\mu$Mortality rate $0.0162$
$\alpha$Reduction in lifespan due to infection $1.1$
SymbolDefinitionValue
$F$Relative fecundity of uninfected to infected females $1.0526$
$s_h$Probability of embryo death due to CI $0.45$
$\mu$Mortality rate $0.0162$
$\alpha$Reduction in lifespan due to infection $1.1$
Table 2.  Parameter set one
SymbolDefinitionValue
$F$ Relative fecundity of uninfected to infected females$1.05$
$s_h$ Probability of embryo death due to CI$0.7$
$\mu$ Mortality rate$0.03$
$\alpha$Reduction in lifespan due to infection$1.2$
SymbolDefinitionValue
$F$ Relative fecundity of uninfected to infected females$1.05$
$s_h$ Probability of embryo death due to CI$0.7$
$\mu$ Mortality rate$0.03$
$\alpha$Reduction in lifespan due to infection$1.2$
Table 3.  Parameter set two
SymbolDefinitionValue
$F$ Relative fecundity of uninfected to infected females $1.1$
$s_h$ Probability of embryo death due to CI $0.9$
$\mu$ Mortality rate $0.02$
$\alpha$ Reduction in lifespan due to infection $1.3$
SymbolDefinitionValue
$F$ Relative fecundity of uninfected to infected females $1.1$
$s_h$ Probability of embryo death due to CI $0.9$
$\mu$ Mortality rate $0.02$
$\alpha$ Reduction in lifespan due to infection $1.3$
Table 4.  Parameter set three
SymbolDefinitionValue
$F$ Relative fecundity of uninfected to infected females $1.1$
$s_h$ Probability of embryo death due to CI $0.8$
$\mu$ Mortality rate $0.05$
$\alpha$ Reduction in lifespan due to infection $1.2$
SymbolDefinitionValue
$F$ Relative fecundity of uninfected to infected females $1.1$
$s_h$ Probability of embryo death due to CI $0.8$
$\mu$ Mortality rate $0.05$
$\alpha$ Reduction in lifespan due to infection $1.2$
Table 5.  Parameter set four
SymbolDefinitionValue
$F$ Relative fecundity of uninfected to infected females $1.4$
$s_h$ Probability of embryo death due to CI $0.9$
$\mu$ Mortality rate $0.1$
$\alpha$ Reduction in lifespan due to infection $1.2$
SymbolDefinitionValue
$F$ Relative fecundity of uninfected to infected females $1.4$
$s_h$ Probability of embryo death due to CI $0.9$
$\mu$ Mortality rate $0.1$
$\alpha$ Reduction in lifespan due to infection $1.2$
[1]

Peter Howard, K. Zumbrun. The Evans function and stability criteria for degenerate viscous shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 837-855. doi: 10.3934/dcds.2004.10.837

[2]

Ramon Plaza, K. Zumbrun. An Evans function approach to spectral stability of small-amplitude shock profiles. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 885-924. doi: 10.3934/dcds.2004.10.885

[3]

Todd Kapitula, Björn Sandstede. Eigenvalues and resonances using the Evans function. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 857-869. doi: 10.3934/dcds.2004.10.857

[4]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[5]

Salvatore Rionero. A nonlinear $L^2$-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences & Engineering, 2006, 3 (1) : 189-204. doi: 10.3934/mbe.2006.3.189

[6]

Björn Sandstede, Arnd Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 941-964. doi: 10.3934/dcds.2004.10.941

[7]

Bo Zheng, Wenliang Guo, Linchao Hu, Mugen Huang, Jianshe Yu. Complex wolbachia infection dynamics in mosquitoes with imperfect maternal transmission. Mathematical Biosciences & Engineering, 2018, 15 (2) : 523-541. doi: 10.3934/mbe.2018024

[8]

Cristina Anton, Alan Yong. Stochastic dynamics and survival analysis of a cell population model with random perturbations. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1077-1098. doi: 10.3934/mbe.2018048

[9]

Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 635-642. doi: 10.3934/dcdsb.2004.4.635

[10]

Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391

[11]

Carles Barril, Àngel Calsina. Stability analysis of an enteropathogen population growing within a heterogeneous group of animals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1231-1252. doi: 10.3934/dcdsb.2017060

[12]

Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541

[13]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[14]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[15]

Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268

[16]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[17]

Tsuyoshi Kajiwara, Toru Sasaki. A note on the stability analysis of pathogen-immune interaction dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 615-622. doi: 10.3934/dcdsb.2004.4.615

[18]

Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156-165. doi: 10.3934/proc.2001.2001.156

[19]

Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105

[20]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (70)
  • HTML views (241)
  • Cited by (0)

Other articles
by authors

[Back to Top]