doi: 10.3934/dcdsb.2017214

Pullback attractors for a class of non-autonomous thermoelastic plate systems

1. 

Universidade Federal da Paraíba Departamento de Matemática 58051-900 João Pessoa PB, Brazil

2. 

Universidade Federal de São Carlos, Departamento de Matemática, 13565-905 São Carlos SP, Brazil

* Corresponding author

The first author is partially supported by FAPESP grant #2014/03686-3, Brazil.
The third author is partially supported by FAPESP grant #2014/03109-6, Brazil.

Received  April 2017 Revised  July 2017 Published  September 2017

In this article we study the asymptotic behavior of solutions, in the sense of pullback attractors, of the evolution system
$\begin{cases}u_{tt} +Δ^2 u+a(t)Δθ=f(t,u),&t>τ,\ x∈Ω,\\θ_t-κΔ θ-a(t)Δ u_t=0,&t>τ,\ x∈Ω,\end{cases}$
subject to boundary conditions
$u=Δ u=θ=0,\ t>τ,\ x∈\partial Ω,$
where $Ω$ is a bounded domain in $\mathbb{R}^N$ with $N≥q 2$, which boundary $\partialΩ$ is assumed to be a $\mathcal{C}^4$-hypersurface, $κ>0$ is constant, $a$ is an Hölder continuous function and $f$ is a dissipative nonlinearity locally Lipschitz in the second variable. Using the theory of uniform sectorial operators, in the sense of P. Sobolevskiǐ ([23]), we give a partial description of the fractional power spaces scale for the thermoelastic plate operator and we show the local and global well-posedness of this non-autonomous problem. Furthermore we prove existence and uniform boundedness of pullback attractors.
Citation: Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2017214
References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems. Volume Ⅰ: Abstract Linear Theory Birkhäuser Verlag, Basel, 1995.

[2]

D. AndradeM. A. Jorge Silva and T. F. Ma, Exponential stability for a plate equation with p-Laplacian and memory terms, Math. Meth. Appl. Sci., 35 (2012), 417-426. doi: 10.1002/mma.1552.

[3]

R. O. AraújoTo Fu Ma and Y. Qin, Long-time behavior of a quasilinear viscoelastic equation with past history, J. Differential Equations, 254 (2013), 4066-4087. doi: 10.1016/j.jde.2013.02.010.

[4]

A. R. A. Barbosa and T. F. Ma, Long-time dynamics of an extensible plate equation with thermal memory, J. Math. Anal. Appl., 416 (2014), 143-165. doi: 10.1016/j.jmaa.2014.02.042.

[5]

M. BarounS. BouliteT. Diagana and L. Maniar, Almost periodic solutions to some semilinear non- autonomous thermoelastic plate equations, J. Math. Anal. Appl., 349 (2009), 74-84. doi: 10.1016/j.jmaa.2008.08.034.

[6]

M. M. CavalcantiV. N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043-1053. doi: 10.1002/mma.250.

[7]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283. doi: 10.1016/j.na.2010.11.032.

[8]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal., 72 (2010), 1967-1976. doi: 10.1016/j.na.2009.09.037.

[9]

T. CaraballoG. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis, 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.

[10]

V. L. CarboneM. J. D. NascimentoK. Schiabel-Silva and R. P. Silva, Pullback attractors for a singularly nonautonomous plate equation, Electron. J. Differential Equations, 77 (2011), 1-13.

[11]

A. N. Carvalho and J. W. Cholewa, Local well-posedness for strongly damped wave equations with critical nonlinearities, Bull. Austral. Math. Soc., 66 (2002), 443-463. doi: 10.1017/S0004972700040296.

[12]

A. N. CarvalhoJ. W. Cholewa and T. Dlotko, Damped wave equations with fast growing dissipative nonlinearities, Discrete Contin. Dyn. Syst., 24 (2009), 1147-1165. doi: 10.3934/dcds.2009.24.1147.

[13]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems Applied Mathematical Sciences, 182, Springer-Verlag, 2013.

[14]

A. N. Carvalho and M. J. D. Nascimento, Singularly non-autonomous semilinear parabolic problems with critical exponents and applications, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 449-471.

[15]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics AMS Colloquium Publications v. 49, A. M. S, Providence, 2002.

[16]

C. GiorgiJ. E. Muñoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Anal. Appl., 260 (2001), 83-99. doi: 10.1006/jmaa.2001.7437.

[17]

D. Henry, Geometric Theory of Semilinear Parabolic Equations Lecture Notes in Mathematics 840, Springer-Verlag, Berlin, 1981.

[18]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Sc. Norm. Super. Pisa Cl. Sci., 27 (1998), 457-482.

[19]

I. Lasiecka and R. Triggiani, Analyticity, and lack thereof, on thermo-elastic semigroups, Contrȏle et Équations aux Dérivées Partielles, ESAIM: Proceedings, 4 (1998), 199-222.

[20]

Z. Y. Liu and M. Renardy, A note on the equations of a thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6. doi: 10.1016/0893-9659(95)00020-Q.

[21]

Z. Liu and S. Zheng, xponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quart. Appl. Math., 55 (1997), 551-564. doi: 10.1090/qam/1466148.

[22]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems In CRC Research Notes in Mathematics 398, Chapman and Hall, 1999.

[23]

P. E. Sobolevskiǐ, Equations of parabolic type in a Banach space, Amer. Math. Soc. Transl., 49 (1966), 1-62.

[24]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators Veb Deutscher, 1978.

show all references

References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems. Volume Ⅰ: Abstract Linear Theory Birkhäuser Verlag, Basel, 1995.

[2]

D. AndradeM. A. Jorge Silva and T. F. Ma, Exponential stability for a plate equation with p-Laplacian and memory terms, Math. Meth. Appl. Sci., 35 (2012), 417-426. doi: 10.1002/mma.1552.

[3]

R. O. AraújoTo Fu Ma and Y. Qin, Long-time behavior of a quasilinear viscoelastic equation with past history, J. Differential Equations, 254 (2013), 4066-4087. doi: 10.1016/j.jde.2013.02.010.

[4]

A. R. A. Barbosa and T. F. Ma, Long-time dynamics of an extensible plate equation with thermal memory, J. Math. Anal. Appl., 416 (2014), 143-165. doi: 10.1016/j.jmaa.2014.02.042.

[5]

M. BarounS. BouliteT. Diagana and L. Maniar, Almost periodic solutions to some semilinear non- autonomous thermoelastic plate equations, J. Math. Anal. Appl., 349 (2009), 74-84. doi: 10.1016/j.jmaa.2008.08.034.

[6]

M. M. CavalcantiV. N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043-1053. doi: 10.1002/mma.250.

[7]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283. doi: 10.1016/j.na.2010.11.032.

[8]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal., 72 (2010), 1967-1976. doi: 10.1016/j.na.2009.09.037.

[9]

T. CaraballoG. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis, 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.

[10]

V. L. CarboneM. J. D. NascimentoK. Schiabel-Silva and R. P. Silva, Pullback attractors for a singularly nonautonomous plate equation, Electron. J. Differential Equations, 77 (2011), 1-13.

[11]

A. N. Carvalho and J. W. Cholewa, Local well-posedness for strongly damped wave equations with critical nonlinearities, Bull. Austral. Math. Soc., 66 (2002), 443-463. doi: 10.1017/S0004972700040296.

[12]

A. N. CarvalhoJ. W. Cholewa and T. Dlotko, Damped wave equations with fast growing dissipative nonlinearities, Discrete Contin. Dyn. Syst., 24 (2009), 1147-1165. doi: 10.3934/dcds.2009.24.1147.

[13]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems Applied Mathematical Sciences, 182, Springer-Verlag, 2013.

[14]

A. N. Carvalho and M. J. D. Nascimento, Singularly non-autonomous semilinear parabolic problems with critical exponents and applications, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 449-471.

[15]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics AMS Colloquium Publications v. 49, A. M. S, Providence, 2002.

[16]

C. GiorgiJ. E. Muñoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Anal. Appl., 260 (2001), 83-99. doi: 10.1006/jmaa.2001.7437.

[17]

D. Henry, Geometric Theory of Semilinear Parabolic Equations Lecture Notes in Mathematics 840, Springer-Verlag, Berlin, 1981.

[18]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Sc. Norm. Super. Pisa Cl. Sci., 27 (1998), 457-482.

[19]

I. Lasiecka and R. Triggiani, Analyticity, and lack thereof, on thermo-elastic semigroups, Contrȏle et Équations aux Dérivées Partielles, ESAIM: Proceedings, 4 (1998), 199-222.

[20]

Z. Y. Liu and M. Renardy, A note on the equations of a thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6. doi: 10.1016/0893-9659(95)00020-Q.

[21]

Z. Liu and S. Zheng, xponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quart. Appl. Math., 55 (1997), 551-564. doi: 10.1090/qam/1466148.

[22]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems In CRC Research Notes in Mathematics 398, Chapman and Hall, 1999.

[23]

P. E. Sobolevskiǐ, Equations of parabolic type in a Banach space, Amer. Math. Soc. Transl., 49 (1966), 1-62.

[24]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators Veb Deutscher, 1978.

[1]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2018111

[2]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2013.33.5189

[3]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2014.13.2543

[4]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2016035

[5]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2017120

[6]

Yuming Qin, Xinguang Yang, Zhiyong Ma. Global existence of solutions for the thermoelastic Bresse system. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2014.13.1395

[7]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2016068

[8]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2017120

[9]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2014.34.203

[10]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2012.32.991

[11]

Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2014.19.1213

[12]

Ting Li. Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2007.6.279

[13]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2012.17.2635

[14]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2014.19.1801

[15]

María Anguiano, Tomás Caraballo, José Real, José Valero. Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2010.14.307

[16]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2016037

[17]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2017195

[18]

Noriaki Yamazaki. Global attractors for non-autonomous multivalued dynamical systems associated with double obstacle problems. Conference Publications, doi: 10.3934/proc.2003.2003.935

[19]

José A. Langa, James C. Robinson, Aníbal Rodríguez-Bernal, A. Suárez, A. Vidal-López. Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2007.18.483

[20]

Aníbal Rodríguez-Bernal, Alejandro Vidal–López. Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problems. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2007.18.537

2016 Impact Factor: 0.994

Article outline

[Back to Top]