# American Institute of Mathematical Sciences

October  2018, 23(8): 3023-3045. doi: 10.3934/dcdsb.2017199

## Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth

 1 Dipartimento di Matematica e Informatica, Università di Cagliari, V. le Merello 92,09123. Cagliari, Italy 2 Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, United Kingdom

* Corresponding author: Giuseppe Viglialoro

Received  December 2016 Revised  April 2017 Published  July 2017

Fund Project: TEW would like to thank St John's College, Oxford and the Mathematical Biosciences Institute (MBI) at Ohio State University, for financially supporting this research through the National Science Foundation grant DMS 1440386 and BBSRC grant BKNXBKOO BK00.16

In this paper we study the chemotaxis-system
 $\begin{equation*}\begin{cases}u_{t}=Δ u-χ \nabla · (u\nabla v)+g(u)&x∈ Ω, t>0, \\v_{t}=Δ v-v+u&x∈ Ω, t>0,\end{cases}\end{equation*}$
defined in a convex smooth and bounded domain
 $Ω$
of
 $\mathbb{R}^n$
,
 $n≥ 1$
, with
 $χ>0$
and endowed with homogeneous Neumann boundary conditions. The source
 $g$
behaves similarly to the logistic function and satisfies
 $g(s)≤ a -bs^α$
, for
 $s≥ 0$
, with
 $a≥ 0$
,
 $b>0$
and
 $α>1$
. Continuing the research initiated in [33], where for appropriate
 $1 < p < α < 2$
and
 $(u_0,v_0) ∈ C^0(\bar{Ω})× C^2(\bar{Ω})$
the global existence of very weak solutions
 $(u,v)$
to the system (for any
 $n≥ 1$
) is shown, we principally study boundedness and regularity of these solutions after some time. More precisely, when
 $n=3$
, we establish that
-for all
 $τ>0$
an upper bound for
 $\frac{a}{b}, ||u_0||_{L^1(Ω)}, ||v_0||_{W^{2,α}(Ω)}$
can be prescribed in a such a way that
 $(u,v)$
is bounded and Hölder continuous beyond
 $τ$
;
-for all
 $(u_0,v_0)$
, and sufficiently small ratio
 $\frac{a}{b}$
, there exists a
 $T>0$
such that
 $(u,v)$
is bounded and Hölder continuous beyond
 $T$
.
Finally, we illustrate the range of dynamics present within the chemotaxis system in one, two and three dimensions by means of numerical simulations.
Citation: Giuseppe Viglialoro, Thomas E. Woolley. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3023-3045. doi: 10.3934/dcdsb.2017199
##### References:

show all references

##### References:
Simulations of system (45) in one dimension with varying value of $\alpha$, given beneath each subfigure. Each subfigure contains the system evaluated at the time points $t=1$, 10, 50 and 100. The remaining parameters values are $a=1$, $b=1.1$ and $\chi=6$. The domain was discretised into 1000 equally spaced points
Simulations of system (45) in one dimension. The simulations are nearly identical to those seen in Figure 1(a). However, each simulation involves a single parameter change. Specifically, in (a) a larger initial condition for $u$ was used (100 was added to the mean); in (b) the parameter $b$ was reduced to 0.2; Finally, in (c) the spatial solution domain has been reduced from 10 to 1
Simulations of system (45) in two dimensions with varying value of $\alpha$, given beneath each subfigure. Evolution time shown above each subfigure. The remaining parameters values are $a=1$, $b=1.1$ and $\chi=6$. The domain was triangulated into 24, 968 finite elements. The figure inset of (b) shows the full extent of the peak, which is growing without bound
Simulations of system (45) illustrating the density of $u$ in three dimensions with varying value of $\alpha$, given beneath each subfigure. Evolution time shown above each subfigure. The remaining parameters values are $a=1$, $b=1.1$ and $\chi=6$. The domain was discretised into 1, 139, 254 voxel elements. Apart from the light grey ball illustrating the boundary of the solution domain the images illustrate isosurfaces of the solution (i.e. surface that represent points of a constant value, thus, they are the three-dimensional analogue of contours). In Figure (a) there are five isosurfaces of value 1, 1.25, 1.5 1.75 and 2, coloured, yellow, green, blue, red and black, respectively. In Figure (b) there are three isosurfaces of value 1, 10, and $10^6$, coloured, yellow, blue and black, respectively
 [1] Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789 [2] Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324 [3] Rachidi B. Salako, Wenxian Shen. Existence of traveling wave solutions to parabolic-elliptic-elliptic chemotaxis systems with logistic source. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 293-319. doi: 10.3934/dcdss.2020017 [4] Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503 [5] Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5025-5046. doi: 10.3934/dcds.2016018 [6] Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299 [7] Shijie Shi, Zhengrong Liu, Hai-Yang Jin. Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinetic & Related Models, 2017, 10 (3) : 855-878. doi: 10.3934/krm.2017034 [8] Rachidi B. Salako, Wenxian Shen. Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6189-6225. doi: 10.3934/dcds.2017268 [9] Rachidi B. Salako. Traveling waves of a full parabolic attraction-repulsion chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5945-5973. doi: 10.3934/dcds.2019260 [10] Tian Xiang. Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion. Communications on Pure & Applied Analysis, 2019, 18 (1) : 255-284. doi: 10.3934/cpaa.2019014 [11] Tomomi Yokota, Noriaki Yoshino. Existence of solutions to chemotaxis dynamics with logistic source. Conference Publications, 2015, 2015 (special) : 1125-1133. doi: 10.3934/proc.2015.1125 [12] Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Decay in chemotaxis systems with a logistic term. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 257-268. doi: 10.3934/dcdss.2020014 [13] Michael Winkler. Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2777-2793. doi: 10.3934/dcdsb.2017135 [14] Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180 [15] Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216 [16] Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147 [17] Xie Li, Yilong Wang. Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2717-2729. doi: 10.3934/dcdsb.2017132 [18] Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328 [19] Ke Lin, Chunlai Mu. Convergence of global and bounded solutions of a two-species chemotaxis model with a logistic source. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2233-2260. doi: 10.3934/dcdsb.2017094 [20] Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150

2018 Impact Factor: 1.008