doi: 10.3934/dcdsb.2017197

Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions

1. 

Department of Mathematics, South China University of Technology, Guangzhou 510640, China

2. 

Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China

* Corresponding author

Received  May 2017 Published  July 2017

Fund Project: The research of H.Y. Jin was supported by NSF of China (No. 11501218) and the Fundamental Research Funds for the Central Universities (No. 2017MS107), and the research of T. Xiang was supported by the NSF of China (No. 11601516,11571364 and 11571363)

We consider the following attraction-repulsion Keller-Segel system:
$\begin{equation*}\begin{cases}u_t=\nabla· (D(u) \nabla u)-χ\nabla·( u\nabla v)+ξ\nabla·( u\nabla w), &x∈ Ω, ~~t>0,\\ v_t=Δ v+α u-β v,& x∈ Ω, ~~t>0,\\0=Δ w+γ u-δ w, &x∈ Ω, ~~t>0,\\u(x,0)=u_0(x),~v(x,0)=v_0(x),&x∈ Ω,\end{cases}\end{equation*}$
with homogeneous Neumann boundary conditions in a bounded domain $Ω\subset \mathbb{R}^n(n>2)$ with smooth boundary. Here all the parameters
$χ, ξ, α, β, γ$
and
$δ$
are positive. The smooth diffusion
$D(u)$
satisfies
$D(u)≥ d u^θ, u>0$
for some
$d>0, θ∈\mathbb{R}$
. It is recently known from [25] that boundedness of solutions is ensured whenever
$θ>1-\frac{2}{n}$
. Here, it is shown, if repulsion dominates or cancels attraction in the sense either
$\{ξγ> χα\}$
or
$\{ξγ=χα, β≥ δ\}$
, the corresponding initial-boundary value problem possesses a unique global classical solution which is uniformly-in-time bounded for large initial data provided
$θ>1-\frac{4}{n+2}$
. In this way, the range of
$θ>1-\frac{2}{n}$
of boundedness is enlarged and thus the repulsion effect on boundedness is exhibited.
Citation: Hai-Yang Jin, Tian Xiang. Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2017197
References:
[1]

S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Commun. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405.

[2]

S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Ⅱ, Commun. Pure Appl. Math., 17 (1964), 35-92. doi: 10.1002/cpa.3160170104.

[3]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Commun. Partial Differential Equations, 4 (1979), 827-868. doi: 10.1080/03605307908820113.

[4]

N. Bellomo, A. Bellouquid, Y. S. Tao, M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X.

[5]

A. Blanchet, J. A. Carrillo, Ph. Laurencǫt, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168. doi: 10.1007/s00526-008-0200-7.

[6]

T. Cieślak, Ph. Laurencǫt, C. Morales-Rodrigo, Global existence and convergence to steady states in a chemorepulsion system, equations, Parabolic and Navier-Stokes Equations, in: Banach Center Publ. Polish Acad. Sci. Inst. Math., 81 (2008), 105-117. doi: 10.4064/bc81-0-7.

[7]

T. Cieślak, C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851. doi: 10.1016/j.jde.2012.01.045.

[8]

T. Cieślak, C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations, 258 (2015), 2080-2113. doi: 10.1016/j.jde.2014.12.004.

[9]

E. Espejo, T. Suzuki, Global existence and blow-up for a system describing the aggregation of microglia, Appl. Math. Lett., 35 (2014), 29-34. doi: 10.1016/j.aml.2014.04.007.

[10]

A. Friedman, Partial Differential Equations Holt, Rinehart Winston, New York, 1969.

[11]

K. Fujie, A. Ito, M. Winkler, T. Yokota, Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36 (2016), 151-169. doi: 10.3934/dcds.2016.36.151.

[12]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I, Jahresber. Deutsch. Math. Verien., 105 (2003), 103-165.

[13]

S. Ishida, T. Ono, T. Yokota, Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Math. Methods Appl. Sci., 36 (2013), 745-760. doi: 10.1002/mma.2622.

[14]

S. Ishida, K. Seki, T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolicparabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010. doi: 10.1016/j.jde.2014.01.028.

[15]

S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440. doi: 10.1016/j.jde.2011.02.012.

[16]

S. Ishida, T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate KellerSegel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596. doi: 10.3934/dcdsb.2013.18.2569.

[17]

K. Ishige, Ph. Laurençot, N. Mizoguchi, Blow-up behavior of solutions to a degenerate parabolic-parabolic Keller-Segel system, Math. Ann., 367 (2017), 461-499.

[18]

H. Y. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478. doi: 10.1016/j.jmaa.2014.09.049.

[19]

H. Y. Jin, Z. Liu, Large time behavior of the full attraction-repulsion Keller-Segel system in the whole space, Appl. Math. Lett., 47 (2015), 13-20. doi: 10.1016/j.aml.2015.03.004.

[20]

H. Y. Jin, Z. A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457. doi: 10.1002/mma.3080.

[21]

H. Y. Jin, Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196. doi: 10.1016/j.jde.2015.08.040.

[22]

P. Laurençot, N. Mizoguchi, Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 197-220. doi: 10.1016/j.anihpc.2015.11.002.

[23]

Y. Li, Y. X. Li, Blow-up of nonradial solutions to attraction-repulsion chemotaxis system in two dimensions, Nonlinear Anal. Real Word Appl., 30 (2016), 170-183. doi: 10.1016/j.nonrwa.2015.12.003.

[24]

K. Lin, C. Mu, Global existence and convergence to steady states for an attractionrepulsion chemotaxis system, Nonlinear Anal. Real World Appl., 31 (2016), 630-642. doi: 10.1016/j.nonrwa.2016.03.012.

[25]

K. Lin, C. Mu, Y. Gao, Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion, J. Differential Equations, 261 (2016), 4524-4572. doi: 10.1016/j.jde.2016.07.002.

[26]

D. Liu, Y. S. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546. doi: 10.1002/mma.3240.

[27]

J. Liu, Z. A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn. Suppl.1, 6 (2012), 31-41. doi: 10.1080/17513758.2011.571722.

[28]

P. Liu, J. P. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst.-Series B., 18 (2013), 2597-2625. doi: 10.3934/dcdsb.2013.18.2597.

[29]

M. Luca, A. Chavez-Ross, L. Edelstein-Keshet, A. Mogilner, Chemotactic signalling, Microglia, and Alzheimer's disease senile plagues: is there a connection?, Bull. Math. Biol., 65 (2003), 693-730.

[30]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math.Sci. Appl., 5 (1995), 581-601.

[31]

T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac. Ser. Internat., 40 (1997), 411-433.

[32]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042.

[33]

L. Nirenberg, An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 20 (1966), 733-737.

[34]

K. J. Painter, T. Hillen, Volume-filling quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.

[35]

R. Shi, W. Wang, Well-posedness for a model derived from an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 423 (2015), 497-520. doi: 10.1016/j.jmaa.2014.10.006.

[36]

Y. Sugiyama, H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364. doi: 10.1016/j.jde.2006.03.003.

[37]

Y. S. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705-2722. doi: 10.3934/dcdsb.2013.18.2705.

[38]

Y. S. Tao, Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36. doi: 10.1142/S0218202512500443.

[39]

Y. S. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019.

[40]

M. Winkler, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925. doi: 10.1002/mma.319.

[41]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.

[42]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020.

[43]

H. Yu, Q. Guo, S. Zheng, Finite time blow-up of nonradial solutions in an attraction-repulsion chemotaxis system, Nonlinear Anal. Real World Appl., 34 (2017), 335-342. doi: 10.1016/j.nonrwa.2016.09.007.

show all references

References:
[1]

S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Commun. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405.

[2]

S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Ⅱ, Commun. Pure Appl. Math., 17 (1964), 35-92. doi: 10.1002/cpa.3160170104.

[3]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Commun. Partial Differential Equations, 4 (1979), 827-868. doi: 10.1080/03605307908820113.

[4]

N. Bellomo, A. Bellouquid, Y. S. Tao, M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X.

[5]

A. Blanchet, J. A. Carrillo, Ph. Laurencǫt, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168. doi: 10.1007/s00526-008-0200-7.

[6]

T. Cieślak, Ph. Laurencǫt, C. Morales-Rodrigo, Global existence and convergence to steady states in a chemorepulsion system, equations, Parabolic and Navier-Stokes Equations, in: Banach Center Publ. Polish Acad. Sci. Inst. Math., 81 (2008), 105-117. doi: 10.4064/bc81-0-7.

[7]

T. Cieślak, C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851. doi: 10.1016/j.jde.2012.01.045.

[8]

T. Cieślak, C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations, 258 (2015), 2080-2113. doi: 10.1016/j.jde.2014.12.004.

[9]

E. Espejo, T. Suzuki, Global existence and blow-up for a system describing the aggregation of microglia, Appl. Math. Lett., 35 (2014), 29-34. doi: 10.1016/j.aml.2014.04.007.

[10]

A. Friedman, Partial Differential Equations Holt, Rinehart Winston, New York, 1969.

[11]

K. Fujie, A. Ito, M. Winkler, T. Yokota, Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36 (2016), 151-169. doi: 10.3934/dcds.2016.36.151.

[12]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I, Jahresber. Deutsch. Math. Verien., 105 (2003), 103-165.

[13]

S. Ishida, T. Ono, T. Yokota, Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Math. Methods Appl. Sci., 36 (2013), 745-760. doi: 10.1002/mma.2622.

[14]

S. Ishida, K. Seki, T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolicparabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010. doi: 10.1016/j.jde.2014.01.028.

[15]

S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440. doi: 10.1016/j.jde.2011.02.012.

[16]

S. Ishida, T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate KellerSegel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596. doi: 10.3934/dcdsb.2013.18.2569.

[17]

K. Ishige, Ph. Laurençot, N. Mizoguchi, Blow-up behavior of solutions to a degenerate parabolic-parabolic Keller-Segel system, Math. Ann., 367 (2017), 461-499.

[18]

H. Y. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478. doi: 10.1016/j.jmaa.2014.09.049.

[19]

H. Y. Jin, Z. Liu, Large time behavior of the full attraction-repulsion Keller-Segel system in the whole space, Appl. Math. Lett., 47 (2015), 13-20. doi: 10.1016/j.aml.2015.03.004.

[20]

H. Y. Jin, Z. A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457. doi: 10.1002/mma.3080.

[21]

H. Y. Jin, Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196. doi: 10.1016/j.jde.2015.08.040.

[22]

P. Laurençot, N. Mizoguchi, Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 197-220. doi: 10.1016/j.anihpc.2015.11.002.

[23]

Y. Li, Y. X. Li, Blow-up of nonradial solutions to attraction-repulsion chemotaxis system in two dimensions, Nonlinear Anal. Real Word Appl., 30 (2016), 170-183. doi: 10.1016/j.nonrwa.2015.12.003.

[24]

K. Lin, C. Mu, Global existence and convergence to steady states for an attractionrepulsion chemotaxis system, Nonlinear Anal. Real World Appl., 31 (2016), 630-642. doi: 10.1016/j.nonrwa.2016.03.012.

[25]

K. Lin, C. Mu, Y. Gao, Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion, J. Differential Equations, 261 (2016), 4524-4572. doi: 10.1016/j.jde.2016.07.002.

[26]

D. Liu, Y. S. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546. doi: 10.1002/mma.3240.

[27]

J. Liu, Z. A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn. Suppl.1, 6 (2012), 31-41. doi: 10.1080/17513758.2011.571722.

[28]

P. Liu, J. P. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst.-Series B., 18 (2013), 2597-2625. doi: 10.3934/dcdsb.2013.18.2597.

[29]

M. Luca, A. Chavez-Ross, L. Edelstein-Keshet, A. Mogilner, Chemotactic signalling, Microglia, and Alzheimer's disease senile plagues: is there a connection?, Bull. Math. Biol., 65 (2003), 693-730.

[30]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math.Sci. Appl., 5 (1995), 581-601.

[31]

T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac. Ser. Internat., 40 (1997), 411-433.

[32]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042.

[33]

L. Nirenberg, An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 20 (1966), 733-737.

[34]

K. J. Painter, T. Hillen, Volume-filling quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.

[35]

R. Shi, W. Wang, Well-posedness for a model derived from an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 423 (2015), 497-520. doi: 10.1016/j.jmaa.2014.10.006.

[36]

Y. Sugiyama, H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364. doi: 10.1016/j.jde.2006.03.003.

[37]

Y. S. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705-2722. doi: 10.3934/dcdsb.2013.18.2705.

[38]

Y. S. Tao, Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36. doi: 10.1142/S0218202512500443.

[39]

Y. S. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019.

[40]

M. Winkler, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925. doi: 10.1002/mma.319.

[41]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.

[42]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020.

[43]

H. Yu, Q. Guo, S. Zheng, Finite time blow-up of nonradial solutions in an attraction-repulsion chemotaxis system, Nonlinear Anal. Real World Appl., 34 (2017), 335-342. doi: 10.1016/j.nonrwa.2016.09.007.

[1]

Yilong Wang, Zhaoyin Xiang. Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1953-1973. doi: 10.3934/dcdsb.2016031

[2]

Shijie Shi, Zhengrong Liu, Hai-Yang Jin. Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinetic & Related Models, 2017, 10 (3) : 855-878. doi: 10.3934/krm.2017034

[3]

Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050

[4]

Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597

[5]

Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299

[6]

Maria Antonietta Farina, Monica Marras, Giuseppe Viglialoro. On explicit lower bounds and blow-up times in a model of chemotaxis. Conference Publications, 2015, 2015 (special) : 409-417. doi: 10.3934/proc.2015.0409

[7]

Youshan Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2705-2722. doi: 10.3934/dcdsb.2013.18.2705

[8]

Youshan Tao, Michael Winkler. Boundedness vs.blow-up in a two-species chemotaxis system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3165-3183. doi: 10.3934/dcdsb.2015.20.3165

[9]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[10]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[11]

Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443

[12]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[13]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

[14]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[15]

W. Edward Olmstead, Colleen M. Kirk, Catherine A. Roberts. Blow-up in a subdiffusive medium with advection. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1655-1667. doi: 10.3934/dcds.2010.28.1655

[16]

Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691

[17]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[18]

Zhanyuan Hou, Stephen Baigent. Global stability and repulsion in autonomous Kolmogorov systems. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1205-1238. doi: 10.3934/cpaa.2015.14.1205

[19]

José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43

[20]

Evgeny Galakhov, Olga Salieva. Blow-up for nonlinear inequalities with gradient terms and singularities on unbounded sets. Conference Publications, 2015, 2015 (special) : 489-494. doi: 10.3934/proc.2015.0489

2016 Impact Factor: 0.994

Article outline

[Back to Top]