doi: 10.3934/dcdsb.2017196

On the scale dynamics of the tropical cyclone intensity

1. 

Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47405, USA, United States

2. 

Department of Mathematics, Sichuan University, Sichuan Sheng, China

* Corresponding author: ckieu@indiana.edu

Received  May 2017 Published  July 2017

Fund Project: This research was supported by the NOAA HFIP funding (Award NA16NWS4680026), the ONR funding (Grant N000141410143), and the Vice Provost for Research through the Indiana University Faculty Research Support Program

This study examines the dynamics of tropical cyclone (TC) development in a TC scale framework. It is shown that this TC-scale dynamics contains the maximum potential intensity (MPI) limit as an asymptotically stable point for which the Coriolis force and the tropospheric stratification are two key parameters responsible for the bifurcation of TC development. In particular, it is found that the Coriolis force breaks the symmetry of the TC development and results in a larger basin of attraction toward the cyclonic (anticyclonic) stable point in the Northern (Southern) Hemisphere. Despite the sensitive dependence of intensity bifurcation on these two parameters, the structurally stable property of the MPI critical point is maintained for a wide range of parameters.

Citation: Chanh Kieu, Quan Wang. On the scale dynamics of the tropical cyclone intensity. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2017196
References:
[1]

B. R. Brown, G. J. Hakim, Variability and predictability of a three-dimensional hurricane in statistical equilibrium, J. Atmos. Sci., 70 (2013), 1806-1820. doi: 10.1175/JAS-D-12-0112.1.

[2]

G. H. Bryan, R. Rotunno, The maximum intensity of tropical cyclones in axisymmetric numerical model simulations, Mon. Wea. Rev, 137 (2009), 1770-1789. doi: 10.1175/2008MWR2709.1.

[3]

J. G. Charney, A. Eliassen, On the growth of the hurricane depression, J. Atmos. Sci, 21 (1964), 68-75.

[4]

K. A. Emanuel, A statistical analysis of tropical cyclone intensity, Monthly Weather Review, 128 (2000), 1139-1152.

[5]

K. A. Emanuel, An air-sea interaction theory for tropical cyclones. part i: Steady-state maintenance, J. Atmos. Sci, 43 (1986), 585-605.

[6]

K. A. Emanuel, The Maximum Intensity of Hurricanes, J. Atmos. Sci, 45 (1986), 1143-1155.

[7]

M. Ferrara,, F. Groff, Z. Moon, K. Keshavamurthy, S. M. Robeson, C. Kieu, Large-scale control of the lower stratosphere on variability of tropical cyclone intensity, Geophys. Res. Lett., 44 (2017), 4313-4323.

[8]

G. J. Hakim, The mean state of axisymmetric hurricanes in statistical equilibrium, J. Atmos. Sci, 68 (2011), 1364-1376. doi: 10.1175/2010JAS3644.1.

[9]

G. J. Hakim, The variability and predictability of axisymmetric hurricanes in statistical equilibrium, J. Atmos. Sci, 70 (2013), 993-1005. doi: 10.1175/JAS-D-12-0188.1.

[10]

K. A. Hill, G. M. Lackmann, The impact of future climate change on TC intensity and structure: A downscaling approach, Journal of Climate, 24 (2011), 4644-4661. doi: 10.1175/2011JCLI3761.1.

[11]

C. Kieu, Hurricane maximum potential intensity equilibrium, Q.J.R. Meteorol. Soc., 141 (2015), 2471-2480. doi: 10.1002/qj.2556.

[12]

C. Kieu, Z. Moon, Hurricane intensity predictability, Bull. Amer. Meteo. Soc., 97 (2016), 1847-1857. doi: 10.1175/BAMS-D-15-00168.1.

[13]

C. Kieu, H. Chen, D. L. Zhang, An examination of the pressure-wind relationship for intense tropical cyclones, Wea. and Forecasting, 25 (2010), 895-907.

[14]

Y. Liu, D.-L. Zhang, M. K. Yau, A Multiscale Numerical Study of Hurricane Andrew Part Ⅱ: Kinematics and Inner-Core Structures, J. Atmos. Sci, 127 (1999), 2597-2616.

[15]

T. Ma, Topology of Manifolds Science Press, Beijing. , 2007.

[16]

J. W. Milnor, Topology from the Differentiable Viewpoint Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va. 1965.

[17]

Y. Ogura, N. A. Phillips, Scale analysis of deep and shallow convection in the atmophere, J. Atmos. Sci, 19 (1962), 173-179.

[18]

R. Rotunno, K. A. Emanuel, An airsea interaction theory for tropical cyclones. part ii: Evolutionary study using a nonhydrostatic axisymmetric numerical model, J. Atmos. Sci, 44 (1987), 542-561.

[19]

W. Shen, R. E. Tuleya, I. Ginis, A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming, J. Climate, 13 (2000), 109-121.

[20]

R. K. Smith, G. Kilroy, M. T. Montgomery, Why do model tropical cyclones intensify more rapidly at low latitudes, Journal of the Atmospheric Sciences, 72 (2015), 1783-1840. doi: 10.1175/JAS-D-14-0044.1.

[21]

R. Wilhelmson, Y. Ogura, The pressure perturbation and the numerical modeling of a cloud, Journal of the Atmospheric Sciences, 29 (1972), 1295-1307.

[22]

H. E. Willoughby, Forced secondary circulations in hurricanes, J. Geophys. Res, 84 (1979), 3173-3183. doi: 10.1029/JC084iC06p03173.

[23]

H. E. Willoughby, Gradient Balance in Tropical Cyclones, J. Atmos. Sci., 47 (1990), 265-274.

show all references

References:
[1]

B. R. Brown, G. J. Hakim, Variability and predictability of a three-dimensional hurricane in statistical equilibrium, J. Atmos. Sci., 70 (2013), 1806-1820. doi: 10.1175/JAS-D-12-0112.1.

[2]

G. H. Bryan, R. Rotunno, The maximum intensity of tropical cyclones in axisymmetric numerical model simulations, Mon. Wea. Rev, 137 (2009), 1770-1789. doi: 10.1175/2008MWR2709.1.

[3]

J. G. Charney, A. Eliassen, On the growth of the hurricane depression, J. Atmos. Sci, 21 (1964), 68-75.

[4]

K. A. Emanuel, A statistical analysis of tropical cyclone intensity, Monthly Weather Review, 128 (2000), 1139-1152.

[5]

K. A. Emanuel, An air-sea interaction theory for tropical cyclones. part i: Steady-state maintenance, J. Atmos. Sci, 43 (1986), 585-605.

[6]

K. A. Emanuel, The Maximum Intensity of Hurricanes, J. Atmos. Sci, 45 (1986), 1143-1155.

[7]

M. Ferrara,, F. Groff, Z. Moon, K. Keshavamurthy, S. M. Robeson, C. Kieu, Large-scale control of the lower stratosphere on variability of tropical cyclone intensity, Geophys. Res. Lett., 44 (2017), 4313-4323.

[8]

G. J. Hakim, The mean state of axisymmetric hurricanes in statistical equilibrium, J. Atmos. Sci, 68 (2011), 1364-1376. doi: 10.1175/2010JAS3644.1.

[9]

G. J. Hakim, The variability and predictability of axisymmetric hurricanes in statistical equilibrium, J. Atmos. Sci, 70 (2013), 993-1005. doi: 10.1175/JAS-D-12-0188.1.

[10]

K. A. Hill, G. M. Lackmann, The impact of future climate change on TC intensity and structure: A downscaling approach, Journal of Climate, 24 (2011), 4644-4661. doi: 10.1175/2011JCLI3761.1.

[11]

C. Kieu, Hurricane maximum potential intensity equilibrium, Q.J.R. Meteorol. Soc., 141 (2015), 2471-2480. doi: 10.1002/qj.2556.

[12]

C. Kieu, Z. Moon, Hurricane intensity predictability, Bull. Amer. Meteo. Soc., 97 (2016), 1847-1857. doi: 10.1175/BAMS-D-15-00168.1.

[13]

C. Kieu, H. Chen, D. L. Zhang, An examination of the pressure-wind relationship for intense tropical cyclones, Wea. and Forecasting, 25 (2010), 895-907.

[14]

Y. Liu, D.-L. Zhang, M. K. Yau, A Multiscale Numerical Study of Hurricane Andrew Part Ⅱ: Kinematics and Inner-Core Structures, J. Atmos. Sci, 127 (1999), 2597-2616.

[15]

T. Ma, Topology of Manifolds Science Press, Beijing. , 2007.

[16]

J. W. Milnor, Topology from the Differentiable Viewpoint Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va. 1965.

[17]

Y. Ogura, N. A. Phillips, Scale analysis of deep and shallow convection in the atmophere, J. Atmos. Sci, 19 (1962), 173-179.

[18]

R. Rotunno, K. A. Emanuel, An airsea interaction theory for tropical cyclones. part ii: Evolutionary study using a nonhydrostatic axisymmetric numerical model, J. Atmos. Sci, 44 (1987), 542-561.

[19]

W. Shen, R. E. Tuleya, I. Ginis, A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming, J. Climate, 13 (2000), 109-121.

[20]

R. K. Smith, G. Kilroy, M. T. Montgomery, Why do model tropical cyclones intensify more rapidly at low latitudes, Journal of the Atmospheric Sciences, 72 (2015), 1783-1840. doi: 10.1175/JAS-D-14-0044.1.

[21]

R. Wilhelmson, Y. Ogura, The pressure perturbation and the numerical modeling of a cloud, Journal of the Atmospheric Sciences, 29 (1972), 1295-1307.

[22]

H. E. Willoughby, Forced secondary circulations in hurricanes, J. Geophys. Res, 84 (1979), 3173-3183. doi: 10.1029/JC084iC06p03173.

[23]

H. E. Willoughby, Gradient Balance in Tropical Cyclones, J. Atmos. Sci., 47 (1990), 265-274.

Figure 1.  A bifurcation diagram in terms of the $v$ component of the critical points as a function of the stratification parameter $s$ with fixed values $f =0.01$ and $r = 0.01$
Figure 2.  A bifurcation diagram in terms of the $v$ component of the critical points as a function of the Coriolis parameter $f$ with fixed values $s = 0.1, r = 0.01$
Figure 3.  a) Flow trajectories for four different initial points in the phase space of $(u, v, b)$ that represent an incipient weak anticyclonic vortex (-0.1, -0.1, 0.1) (red); a mature TC near the MPI equilibrium with a weak warm core (-1, 1, 0.5) (cyan); a mature TC with intensity significant above the MPI equilibrium limit (-1, 1.4, 1) (green); and a mature TC near the MPI equilibrium limit with too weak low level convergence (-0.1, 1, 1) (blue) for the case of $f = 0.05$; (b) Time series of $v$ during the entire simulation; and (c)-(d) Similar to (a)-(b) but for the case of $f=0$
[1]

Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461

[2]

Tian Ma, Shouhong Wang. Tropical atmospheric circulations: Dynamic stability and transitions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1399-1417. doi: 10.3934/dcds.2010.26.1399

[3]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1447-1462. doi: 10.3934/cpaa.2011.10.1447

[4]

Tsuyoshi Kajiwara, Toru Sasaki. A note on the stability analysis of pathogen-immune interaction dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 615-622. doi: 10.3934/dcdsb.2004.4.615

[5]

Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2007, 6 (1) : 69-82. doi: 10.3934/cpaa.2007.6.69

[6]

Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2006, 5 (3) : 515-528. doi: 10.3934/cpaa.2006.5.515

[7]

Jürgen Saal. Wellposedness of the tornado-hurricane equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 649-664. doi: 10.3934/dcds.2010.26.649

[8]

Salvatore Rionero. A nonlinear $L^2$-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences & Engineering, 2006, 3 (1) : 189-204. doi: 10.3934/mbe.2006.3.189

[9]

MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 777-786. doi: 10.3934/mbe.2013.10.777

[10]

Robert Stephen Cantrell, Chris Cosner, William F. Fagan. Edge-linked dynamics and the scale-dependence of competitive. Mathematical Biosciences & Engineering, 2005, 2 (4) : 833-868. doi: 10.3934/mbe.2005.2.833

[11]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[12]

Andrey V. Kremnev, Alexander S. Kuleshov. Nonlinear dynamics and stability of the skateboard. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 85-103. doi: 10.3934/dcdss.2010.3.85

[13]

Shunfu Jin, Wuyi Yue, Shiying Ge. Equilibrium analysis of an opportunistic spectrum access mechanism with imperfect sensing results. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1255-1271. doi: 10.3934/jimo.2016071

[14]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

[15]

Xiao-Bing Li, Xian-Jun Long, Zhi Lin. Stability of solution mapping for parametric symmetric vector equilibrium problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 661-671. doi: 10.3934/jimo.2015.11.661

[16]

Shengji Li, Chunmei Liao, Minghua Li. Stability analysis of parametric variational systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 317-331. doi: 10.3934/naco.2011.1.317

[17]

Thomas Blanc, Mihai Bostan, Franck Boyer. Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4637-4676. doi: 10.3934/dcds.2017200

[18]

Zhuoqin Yang, Tingting Guan. Bifurcation analysis of complex bursting induced by two different time-scale slow variables. Conference Publications, 2011, 2011 (Special) : 1440-1447. doi: 10.3934/proc.2011.2011.1440

[19]

Tsuguhito Hirai, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Performance analysis of large-scale parallel-distributed processing with backup tasks for cloud computing. Journal of Industrial & Management Optimization, 2014, 10 (1) : 113-129. doi: 10.3934/jimo.2014.10.113

[20]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (3)
  • HTML views (35)
  • Cited by (0)

Other articles
by authors

[Back to Top]