October 2017, 22(8): 3167-3197. doi: 10.3934/dcdsb.2017169

Exponential stability for nonautonomous functional differential equations with state-dependent delay

Departamento de Matemática Aplicada, Universidad de Valladolid, Paseo del Cauce 59,47011 Valladolid, Spain

Received  January 2016 Revised  January 2017 Published  June 2017

Fund Project: Partly supported by MEC (Spain) under project MTM2015-66330-P and by European Commission under project H2020-MSCA-ITN-2014

The properties of stability of a compact set $\mathcal{K}$ which is positively invariant for a semiflow $(\Omega× {W^{1,\infty }}([-r,0],\mathbb{R}^n),Π,\mathbb{R}^+)$ determined by a family of nonautonomous FDEs with state-dependent delay taking values in $[0,r]$ are analyzed. The solutions of the variational equation through the orbits of $\mathcal{K}$ induce linear skew-product semiflows on the bundles $\mathcal{K}×{W^{1,\infty }}([-r,0],\mathbb{R}^n)$ and $\mathcal{K}× C([-r,0],\mathbb{R}^n)$. The coincidence of the upper-Lyapunov exponents for both semiflows is checked, and it is a fundamental tool to prove that the strictly negative character of this upper-Lyapunov exponent is equivalent to the exponential stability of $\mathcal{K}$ in $\Omega×{W^{1,\infty }}([-r,0],\mathbb{R}^n)$ and also to the exponential stability of this compact set when the supremum norm is taken in ${W^{1,\infty }}([-r,0],\mathbb{R}^n)$. In particular, the existence of a uniformly exponentially stable solution of a uniformly almost periodic FDE ensures the existence of exponentially stable almost periodic solutions.

Citation: Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169
References:
[1]

O. ArinoE. Sánchez and A. Fathallah, State-dependent delay differential equations in populations dynamics: Modeling and analysis, Fields Inst. Commun., 29 (2001), 19-36.

[2]

M. V. Barbarossa and H. O. Walther, Linearized stability for a new class of neutral equations with state-dependent delay, Differ. Equ. Dyn. Syst., 24 (2016), 63-79. doi: 10.1007/s12591-014-0204-z.

[3]

Y. ChenQ. Hu and J. Wu, Second-order differentiability with respect to parameters for differential equations with adaptative delays, Front. Math. China, 5 (2010), 221-286. doi: 10.1007/s11464-010-0005-9.

[4]

S.-N. Chow and H. Leiva, Dynamical spectrum for time dependent linear systems in Banach spaces, Japan J. Indust. Appl. Math., 11 (1994), 379-415. doi: 10.1007/BF03167229.

[5]

S.-N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces, J. Differential Equations, 120 (1995), 429-477. doi: 10.1006/jdeq.1995.1117.

[6]

J. K. Hale and S. M. Verdyun Lunel, Introduction to Functional Differential Equations Appl. Math. Sciences, 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[7]

F. Hartung, On differentiability of solutions with respect to parameters in a class of functional differential equations, Funct. Differ. Equ., 4 (1997), 65-79.

[8]

F. Hartung, Linearized stability in periodic functional differential equations with state-dependent delays, J. Comput. Appl. Math., 174 (2005), 201-211. doi: 10.1016/j.cam.2004.04.006.

[9]

F. Hartung, Differentiability of solutions with respect to the initial data in differential equations with state-dependent delays, J. Dynam. Differential Equations, 23 (2011), 843-884. doi: 10.1007/s10884-011-9218-1.

[10]

F. Hartung, On second-order differentiability with respect to parameters for differential equations with state-dependent delays, J. Dynam. Differential Equations, 25 (2013), 1089-1138. doi: 10.1007/s10884-013-9330-5.

[11]

F. HartungT. KrisztinH. O. Walther and J. Wu, Functional differential equations with state-dependent delays: Theory and applications, Elsevier, North-Holland, 3 (2006), 435-545. doi: 10.1016/S1874-5725(06)80009-X.

[12]

X. He and R. de la Llave, Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method Ⅰ: Finitely differentiable, hyperbolic case, J. Dynam. Differential Equations (2016).

[13]

X. He and R. de la Llave, Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method Ⅱ: Analytic case, J. Differential Equations, 261 (2016), 2068-2108. doi: 10.1016/j.jde.2016.04.024.

[14]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay Lecture Notes in Math. , 1473, Springer-Verlag, Berlin, Heidelberg, New York, 1991. doi: 10.1007/BFb0084432.

[15]

Q. HuJ. Wu and X. Zou, Estimates of periods and global continua of periodic solutions for state-dependent delay equations, SIAM J. Math. Anal., 44 (2012), 2401-2427. doi: 10.1137/100793712.

[16]

Q. Hu and J. Wu, Global Hopf bifurcation for differential equations with state-dependent delay, J. Differential Equations, 248 (2010), 2801-2840. doi: 10.1016/j.jde.2010.03.020.

[17]

T. Insperger and G. Stépán, Semi-discretation for Time-Delay Systems. Stability and Engeneering Applications, Appl. Math. Sci. , 178 Springter, New York, 2011.

[18]

T. Krisztin and A. Rezounenko, Parabolic partial differential equations with discrete state-dependent delay: Classical solutions and solution manifold, J. Differential Equations, 260 (2016), 4454-4472. doi: 10.1016/j.jde.2015.11.018.

[19]

J. Mallet-Paret and R. D. Nussbaum, Stability of periodic solutions of state-dependent delay-differential equations, J. Differential Equations, 250 (2011), 4085-4103. doi: 10.1016/j.jde.2010.10.023.

[20]

I. MarotoC. Núñez and R. Obaya, Dynamical properties of nonautonomous functional differential equations with state-dependent delay, Discrete Cont. Dynam. Syst., Ser. A, 37 (2017), 3939-3961. doi: 10.3934/dcds.2017167.

[21]

S. NovoR. Obaya and A. M. Sanz, Exponential stability in non-autonomous delayed equations with applications to neural networks, Discrete Contin. Dyn. Syst., 18 (2007), 517-536. doi: 10.3934/dcds.2007.18.517.

[22]

S. NovoR. Obaya and A. M. Sanz, Stability and extensibility results for abstract skew-product semiflows, J. Differential Equations, 235 (2007), 623-646. doi: 10.1016/j.jde.2006.12.009.

[23]

R. J. Sacker and G. R. Sell, Lifting properties in skew-products flows with applications to differential equations Mem. Amer. Math. Soc. Amer. Math. Soc. , Providence, 11 (1977), iv+67 pp. doi: 10.1090/memo/0190.

[24]

R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in Banach spaces, J. Differential Equations, 113 (1994), 17-67. doi: 10.1006/jdeq.1994.1113.

[25]

W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows Mem. Amer. Math. Soc. , 136 (1998), x+93 pp. doi: 10.1090/memo/0647.

[26]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Science Appl. Math. , 57, Springer, New York, 2001. doi: 10.1007/978-1-4419-7646-8.

[27]

H. O. Walther, The solution manifold and C1-smoothness for differential equations with state-dependent delay, J. Differential Equations, 195 (2003), 46-65. doi: 10.1016/j.jde.2003.07.001.

[28]

H. O. Walther, Smoothness of semiflows for differential equations with state-dependent delays, J. Math. Sci. 124 (2004).

[29]

J. Wu, Introduction to Neural Dynamics and Signal Transmission Delay, Nonlinear Analysis and Aplications, 6, Walter de Gruyter, Berlin, New York, 2001. doi: 10.1515/9783110879971.

show all references

References:
[1]

O. ArinoE. Sánchez and A. Fathallah, State-dependent delay differential equations in populations dynamics: Modeling and analysis, Fields Inst. Commun., 29 (2001), 19-36.

[2]

M. V. Barbarossa and H. O. Walther, Linearized stability for a new class of neutral equations with state-dependent delay, Differ. Equ. Dyn. Syst., 24 (2016), 63-79. doi: 10.1007/s12591-014-0204-z.

[3]

Y. ChenQ. Hu and J. Wu, Second-order differentiability with respect to parameters for differential equations with adaptative delays, Front. Math. China, 5 (2010), 221-286. doi: 10.1007/s11464-010-0005-9.

[4]

S.-N. Chow and H. Leiva, Dynamical spectrum for time dependent linear systems in Banach spaces, Japan J. Indust. Appl. Math., 11 (1994), 379-415. doi: 10.1007/BF03167229.

[5]

S.-N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces, J. Differential Equations, 120 (1995), 429-477. doi: 10.1006/jdeq.1995.1117.

[6]

J. K. Hale and S. M. Verdyun Lunel, Introduction to Functional Differential Equations Appl. Math. Sciences, 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[7]

F. Hartung, On differentiability of solutions with respect to parameters in a class of functional differential equations, Funct. Differ. Equ., 4 (1997), 65-79.

[8]

F. Hartung, Linearized stability in periodic functional differential equations with state-dependent delays, J. Comput. Appl. Math., 174 (2005), 201-211. doi: 10.1016/j.cam.2004.04.006.

[9]

F. Hartung, Differentiability of solutions with respect to the initial data in differential equations with state-dependent delays, J. Dynam. Differential Equations, 23 (2011), 843-884. doi: 10.1007/s10884-011-9218-1.

[10]

F. Hartung, On second-order differentiability with respect to parameters for differential equations with state-dependent delays, J. Dynam. Differential Equations, 25 (2013), 1089-1138. doi: 10.1007/s10884-013-9330-5.

[11]

F. HartungT. KrisztinH. O. Walther and J. Wu, Functional differential equations with state-dependent delays: Theory and applications, Elsevier, North-Holland, 3 (2006), 435-545. doi: 10.1016/S1874-5725(06)80009-X.

[12]

X. He and R. de la Llave, Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method Ⅰ: Finitely differentiable, hyperbolic case, J. Dynam. Differential Equations (2016).

[13]

X. He and R. de la Llave, Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method Ⅱ: Analytic case, J. Differential Equations, 261 (2016), 2068-2108. doi: 10.1016/j.jde.2016.04.024.

[14]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay Lecture Notes in Math. , 1473, Springer-Verlag, Berlin, Heidelberg, New York, 1991. doi: 10.1007/BFb0084432.

[15]

Q. HuJ. Wu and X. Zou, Estimates of periods and global continua of periodic solutions for state-dependent delay equations, SIAM J. Math. Anal., 44 (2012), 2401-2427. doi: 10.1137/100793712.

[16]

Q. Hu and J. Wu, Global Hopf bifurcation for differential equations with state-dependent delay, J. Differential Equations, 248 (2010), 2801-2840. doi: 10.1016/j.jde.2010.03.020.

[17]

T. Insperger and G. Stépán, Semi-discretation for Time-Delay Systems. Stability and Engeneering Applications, Appl. Math. Sci. , 178 Springter, New York, 2011.

[18]

T. Krisztin and A. Rezounenko, Parabolic partial differential equations with discrete state-dependent delay: Classical solutions and solution manifold, J. Differential Equations, 260 (2016), 4454-4472. doi: 10.1016/j.jde.2015.11.018.

[19]

J. Mallet-Paret and R. D. Nussbaum, Stability of periodic solutions of state-dependent delay-differential equations, J. Differential Equations, 250 (2011), 4085-4103. doi: 10.1016/j.jde.2010.10.023.

[20]

I. MarotoC. Núñez and R. Obaya, Dynamical properties of nonautonomous functional differential equations with state-dependent delay, Discrete Cont. Dynam. Syst., Ser. A, 37 (2017), 3939-3961. doi: 10.3934/dcds.2017167.

[21]

S. NovoR. Obaya and A. M. Sanz, Exponential stability in non-autonomous delayed equations with applications to neural networks, Discrete Contin. Dyn. Syst., 18 (2007), 517-536. doi: 10.3934/dcds.2007.18.517.

[22]

S. NovoR. Obaya and A. M. Sanz, Stability and extensibility results for abstract skew-product semiflows, J. Differential Equations, 235 (2007), 623-646. doi: 10.1016/j.jde.2006.12.009.

[23]

R. J. Sacker and G. R. Sell, Lifting properties in skew-products flows with applications to differential equations Mem. Amer. Math. Soc. Amer. Math. Soc. , Providence, 11 (1977), iv+67 pp. doi: 10.1090/memo/0190.

[24]

R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in Banach spaces, J. Differential Equations, 113 (1994), 17-67. doi: 10.1006/jdeq.1994.1113.

[25]

W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows Mem. Amer. Math. Soc. , 136 (1998), x+93 pp. doi: 10.1090/memo/0647.

[26]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Science Appl. Math. , 57, Springer, New York, 2001. doi: 10.1007/978-1-4419-7646-8.

[27]

H. O. Walther, The solution manifold and C1-smoothness for differential equations with state-dependent delay, J. Differential Equations, 195 (2003), 46-65. doi: 10.1016/j.jde.2003.07.001.

[28]

H. O. Walther, Smoothness of semiflows for differential equations with state-dependent delays, J. Math. Sci. 124 (2004).

[29]

J. Wu, Introduction to Neural Dynamics and Signal Transmission Delay, Nonlinear Analysis and Aplications, 6, Walter de Gruyter, Berlin, New York, 2001. doi: 10.1515/9783110879971.

[1]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[2]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[3]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[4]

Hans-Otto Walther. On Poisson's state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 365-379. doi: 10.3934/dcds.2013.33.365

[5]

Alexander Rezounenko. Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1547-1563. doi: 10.3934/dcdsb.2017074

[6]

Alexander Rezounenko. Viral infection model with diffusion and state-dependent delay: Stability of classical solutions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1091-1105. doi: 10.3934/dcdsb.2018143

[7]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[8]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[9]

Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801

[10]

Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993

[11]

Odo Diekmann, Karolína Korvasová. Linearization of solution operators for state-dependent delay equations: A simple example. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 137-149. doi: 10.3934/dcds.2016.36.137

[12]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[13]

Hermann Brunner, Stefano Maset. Time transformations for state-dependent delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (1) : 23-45. doi: 10.3934/cpaa.2010.9.23

[14]

Matthias Büger, Marcus R.W. Martin. Stabilizing control for an unbounded state-dependent delay equation. Conference Publications, 2001, 2001 (Special) : 56-65. doi: 10.3934/proc.2001.2001.56

[15]

Qingwen Hu, Huan Zhang. Stabilization of turning processes using spindle feedback with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4329-4360. doi: 10.3934/dcdsb.2018167

[16]

Cónall Kelly, Alexandra Rodkina. Constrained stability and instability of polynomial difference equations with state-dependent noise. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 913-933. doi: 10.3934/dcdsb.2009.11.913

[17]

Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416

[18]

Benjamin B. Kennedy. A state-dependent delay equation with negative feedback and "mildly unstable" rapidly oscillating periodic solutions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1633-1650. doi: 10.3934/dcdsb.2013.18.1633

[19]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 991-1009. doi: 10.3934/dcdsb.2018139

[20]

Xianlong Fu. Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. Evolution Equations & Control Theory, 2017, 6 (4) : 517-534. doi: 10.3934/eect.2017026

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (15)
  • HTML views (22)
  • Cited by (0)

Other articles
by authors

[Back to Top]