October 2018, 23(8): 2967-2988. doi: 10.3934/dcdsb.2017149

Fractional Navier-Stokes equations

Institute of Mathematics, University of Silesia in Katowice, 40-007 Katowice, Poland

* Corresponding author:Jan W. Cholewa

Received  December 2016 Revised  February 2017 Published  April 2017

Fund Project: J.C. partially supported by grant MTM2012-31298 from Ministerio de Economia y Competividad, Spain; T.D. partially supported by NCN grant DEC-2012/05/B/ST1/00546, Poland

We consider fractional Navier-Stokes equations in a smooth bound-ed domain $Ω\subset\mathbb{R}^N$, $N≥2$. Following the geometric theory of abstract parabolic problems we give the detailed analysis concerning existence, uniqueness, regularization and continuation properties of the solution. For the original Navier-Stokes problem we construct next global solution of the Leray-Hopf type satisfying also Duhamel's integral formula. Focusing finally on the 3-D model with zero external force we estimate a time after which the latter solution regularizes to strong solution. We also estimate a time such that if a local strong solution exists until that time, then it exists for ever.

Citation: Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149
References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems, Volume Ⅰ, Abstract Linear Theory Birkhaüser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9221-6.

[2]

J. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc., 352 (2000), 285-310. doi: 10.1090/S0002-9947-99-02528-3.

[3]

J. M. Ball, Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. Am. Math. Soc., 63 (1977), 370-373. doi: 10.2307/2041821.

[4]

H. Brezis, Analyse Fonctionelle. Théorie et Applications, Masson, Paris, 1983.

[5]

L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903.

[6]

A. N. Carvalho and J. W. Cholewa, Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities, J. Math. Anal. Appl., 310 (2005), 557-578. doi: 10.1016/j.jmaa.2005.02.024.

[7]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.

[8]

J. W. Cholewa, C. Quesada and A. Rodriguez-Bernal, Nonlinear evolution equations in scales of Banach spaces and applications to PDEs, preprint.

[9]

T. Dlotko, Navier-Stokes equation and its fractional approximations Appl. Math. Optim. (2016). doi: 10.1007/s00245-016-9368-y.

[10]

T. DlotkoM. B. Kania and C. Sun, Quasi-geostrophic equation in R2, J. Differential Equations, 259 (2015), 531-561. doi: 10.1016/j.jde.2015.02.022.

[11]

C. L. Fefferman, Existence and smoothness of the Navier-Stokes equation http://www.claymath.org/sites/default/files/navierstokes.pdf

[12]

C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511546754.

[13]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.

[14]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Arch. Rational Mech. Anal., 16 (1964), 269-315. doi: 10.1007/BF00276188.

[15]

D. Fujiwara and H. Morimoto, An Lr-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, 24 (1977), 685-700.

[16]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state Problems Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.

[17]

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lr spaces, Math. Z., 178 (1981), 297-329. doi: 10.1007/BF01214869.

[18]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 61 (1986), 186-212. doi: 10.1016/0022-0396(86)90096-3.

[19]

Y. Giga, Domains of fractional powers of the Stokes operator in Lr spaces, Arch. Rational Mech. Anal., 89 (1985), 251-265. doi: 10.1007/BF00276874.

[20]

Y. Giga and T. Miyakawa, Solutions in Lr of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281. doi: 10.1007/BF00276875.

[21]

B. GuoD. HuangQ. Li and C. Sun, Dynamics for a generalized incompressible Navier-Stokes equations in $\mathbb{R}^2$, Adv. Nonlinear Stud., 16 (2016), 249-272. doi: 10.1515/ans-2015-5018.

[22]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.

[23]

A. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo, Sec. I, 24 (1977), 303-319.

[24]

T. Kato and H. Fujita, On the nonstationary Navier-Stokes system, Rend. Sem. Math. Univ. Padova, 32 (1962), 243-260.

[25]

H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346. doi: 10.2140/pjm.1966.19.285.

[26]

O. A. Ladyzhenskaya, On some gaps in two of my papers on the Navier-Stokes equations and the way of closing them, J. Math. Sci., 115 (2003), 2789-2891.

[27]

O. A. Ladyzhenskaya, On the uniqueness and smoothness of generalized solutions of the Navier-Stokes equations, Zap. Nauchn. Semin. LOMI, (1967), 169-185.

[28]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2 Gordon and Breach, Science Publishers, New York-London-Paris, 1969.

[29]

J. -L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod Gauthier-Villars, Paris, 1969.

[30]

J. -L. Lions and E. Magenes, Probl}mes aux Limites non Homogénes et Applications, Vol. Ⅰ, Dunod, Paris 1968.

[31]

G. Łukaszewicz and P. Kalita, Navier-Stokes Equations. An Introduction with Applications Advances in Mechanics and Mathematics 34, Springer International Publishing, 2016. doi: 10.1007/978-3-319-27760-8.

[32]

C. Martínez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators Elsevier, Amsterdam, 2001.

[33]

K. Masuda, Weak solutions of Navier-Stokes equations, Tôhoku Math. Journ., 36 (1984), 623-646. doi: 10.2748/tmj/1178228767.

[34]

J. Mattingly and Y. Sinai, An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equation, Commun. Contemp. Math., 1 (1999), 497-516. doi: 10.1142/S0219199799000183.

[35]

T. Miyakawa, On the initial value problem for the Navier-Stokes equations in $L^p$ spaces, Hiroshima Math. J., 11 (1981), 9-20.

[36]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations Springer, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1.

[37]

G. Prodi, Un teorema di unicita per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182. doi: 10.1007/BF02410664.

[38]

F. Ribaud, A remark on the uniqueness problem for the weak solutions of Navier-Stokes equations, Ann. Fac. Sci. Toulouse Math., 11 (2002), 225-238. doi: 10.5802/afst.1024.

[39]

J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.

[40]

J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (Proc. Sympos. , Madison, Wis. , 1962), (1963), 69{98, Univ. of Wisconsin Press, Madison, Wisconsin.

[41]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.

[42]

P. E. Sobolevskii, On non-stationary equations of hydrodynamics for viscous fluid, Dokl. Akad. Nauk SSSR, 128 (1959), 45-48 (in Russian).

[43]

P. E. Sobolevskii, On equations of parabolic type in a Banach space, Trudy Moskov. Mat. Obsc. , 10 (1961), 297-350 (in Russian); Equations of parabolic type in a Banach space, Amer. Math. Soc. Transl. , 49 (1966), 1{62.

[44]

H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.

[45]

W. A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math., 19 (1966), 543-551. doi: 10.2140/pjm.1966.19.543.

[46]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1979.

[47]

R. Temam, On the Euler equations of incompressible perfect fluids, J. Functional Analysis, 20 (1975), 32-43. doi: 10.1016/0022-1236(75)90052-X.

[48]

W. von Wahl, Equations of Navier-Stokes and Abstract Parabolic Equations Vieweg, Braunschweig/Wiesbaden, 1985. doi: 10.1007/978-3-663-13911-9.

[49]

W. von Wahl, Global solutions to evolution equations of parabolic type, in: Differential Equations in Banach Spaces, Proceedings, 1985 (Eds. A. Favini, E. Obrecht), Springer-Verlag, Berlin, 1223 (1986), 254{266

[50]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980), 219-230. doi: 10.1007/BF00280539.

[51]

J. Wu, Generalized MHD equations, J. Differential Equations, 195 (2003), 284-312. doi: 10.1016/j.jde.2003.07.007.

[52]

H. Wu and J. Fan, Weak-strong uniqueness for the generalized Navier-Stokes equations, Appl. Math. Lett., 25 (2012), 423-428. doi: 10.1016/j.aml.2011.09.028.

show all references

References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems, Volume Ⅰ, Abstract Linear Theory Birkhaüser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9221-6.

[2]

J. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc., 352 (2000), 285-310. doi: 10.1090/S0002-9947-99-02528-3.

[3]

J. M. Ball, Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. Am. Math. Soc., 63 (1977), 370-373. doi: 10.2307/2041821.

[4]

H. Brezis, Analyse Fonctionelle. Théorie et Applications, Masson, Paris, 1983.

[5]

L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903.

[6]

A. N. Carvalho and J. W. Cholewa, Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities, J. Math. Anal. Appl., 310 (2005), 557-578. doi: 10.1016/j.jmaa.2005.02.024.

[7]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.

[8]

J. W. Cholewa, C. Quesada and A. Rodriguez-Bernal, Nonlinear evolution equations in scales of Banach spaces and applications to PDEs, preprint.

[9]

T. Dlotko, Navier-Stokes equation and its fractional approximations Appl. Math. Optim. (2016). doi: 10.1007/s00245-016-9368-y.

[10]

T. DlotkoM. B. Kania and C. Sun, Quasi-geostrophic equation in R2, J. Differential Equations, 259 (2015), 531-561. doi: 10.1016/j.jde.2015.02.022.

[11]

C. L. Fefferman, Existence and smoothness of the Navier-Stokes equation http://www.claymath.org/sites/default/files/navierstokes.pdf

[12]

C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511546754.

[13]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.

[14]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Arch. Rational Mech. Anal., 16 (1964), 269-315. doi: 10.1007/BF00276188.

[15]

D. Fujiwara and H. Morimoto, An Lr-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, 24 (1977), 685-700.

[16]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state Problems Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.

[17]

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lr spaces, Math. Z., 178 (1981), 297-329. doi: 10.1007/BF01214869.

[18]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 61 (1986), 186-212. doi: 10.1016/0022-0396(86)90096-3.

[19]

Y. Giga, Domains of fractional powers of the Stokes operator in Lr spaces, Arch. Rational Mech. Anal., 89 (1985), 251-265. doi: 10.1007/BF00276874.

[20]

Y. Giga and T. Miyakawa, Solutions in Lr of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281. doi: 10.1007/BF00276875.

[21]

B. GuoD. HuangQ. Li and C. Sun, Dynamics for a generalized incompressible Navier-Stokes equations in $\mathbb{R}^2$, Adv. Nonlinear Stud., 16 (2016), 249-272. doi: 10.1515/ans-2015-5018.

[22]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.

[23]

A. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo, Sec. I, 24 (1977), 303-319.

[24]

T. Kato and H. Fujita, On the nonstationary Navier-Stokes system, Rend. Sem. Math. Univ. Padova, 32 (1962), 243-260.

[25]

H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346. doi: 10.2140/pjm.1966.19.285.

[26]

O. A. Ladyzhenskaya, On some gaps in two of my papers on the Navier-Stokes equations and the way of closing them, J. Math. Sci., 115 (2003), 2789-2891.

[27]

O. A. Ladyzhenskaya, On the uniqueness and smoothness of generalized solutions of the Navier-Stokes equations, Zap. Nauchn. Semin. LOMI, (1967), 169-185.

[28]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2 Gordon and Breach, Science Publishers, New York-London-Paris, 1969.

[29]

J. -L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod Gauthier-Villars, Paris, 1969.

[30]

J. -L. Lions and E. Magenes, Probl}mes aux Limites non Homogénes et Applications, Vol. Ⅰ, Dunod, Paris 1968.

[31]

G. Łukaszewicz and P. Kalita, Navier-Stokes Equations. An Introduction with Applications Advances in Mechanics and Mathematics 34, Springer International Publishing, 2016. doi: 10.1007/978-3-319-27760-8.

[32]

C. Martínez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators Elsevier, Amsterdam, 2001.

[33]

K. Masuda, Weak solutions of Navier-Stokes equations, Tôhoku Math. Journ., 36 (1984), 623-646. doi: 10.2748/tmj/1178228767.

[34]

J. Mattingly and Y. Sinai, An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equation, Commun. Contemp. Math., 1 (1999), 497-516. doi: 10.1142/S0219199799000183.

[35]

T. Miyakawa, On the initial value problem for the Navier-Stokes equations in $L^p$ spaces, Hiroshima Math. J., 11 (1981), 9-20.

[36]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations Springer, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1.

[37]

G. Prodi, Un teorema di unicita per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182. doi: 10.1007/BF02410664.

[38]

F. Ribaud, A remark on the uniqueness problem for the weak solutions of Navier-Stokes equations, Ann. Fac. Sci. Toulouse Math., 11 (2002), 225-238. doi: 10.5802/afst.1024.

[39]

J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.

[40]

J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (Proc. Sympos. , Madison, Wis. , 1962), (1963), 69{98, Univ. of Wisconsin Press, Madison, Wisconsin.

[41]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.

[42]

P. E. Sobolevskii, On non-stationary equations of hydrodynamics for viscous fluid, Dokl. Akad. Nauk SSSR, 128 (1959), 45-48 (in Russian).

[43]

P. E. Sobolevskii, On equations of parabolic type in a Banach space, Trudy Moskov. Mat. Obsc. , 10 (1961), 297-350 (in Russian); Equations of parabolic type in a Banach space, Amer. Math. Soc. Transl. , 49 (1966), 1{62.

[44]

H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.

[45]

W. A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math., 19 (1966), 543-551. doi: 10.2140/pjm.1966.19.543.

[46]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1979.

[47]

R. Temam, On the Euler equations of incompressible perfect fluids, J. Functional Analysis, 20 (1975), 32-43. doi: 10.1016/0022-1236(75)90052-X.

[48]

W. von Wahl, Equations of Navier-Stokes and Abstract Parabolic Equations Vieweg, Braunschweig/Wiesbaden, 1985. doi: 10.1007/978-3-663-13911-9.

[49]

W. von Wahl, Global solutions to evolution equations of parabolic type, in: Differential Equations in Banach Spaces, Proceedings, 1985 (Eds. A. Favini, E. Obrecht), Springer-Verlag, Berlin, 1223 (1986), 254{266

[50]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980), 219-230. doi: 10.1007/BF00280539.

[51]

J. Wu, Generalized MHD equations, J. Differential Equations, 195 (2003), 284-312. doi: 10.1016/j.jde.2003.07.007.

[52]

H. Wu and J. Fan, Weak-strong uniqueness for the generalized Navier-Stokes equations, Appl. Math. Lett., 25 (2012), 423-428. doi: 10.1016/j.aml.2011.09.028.

[1]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[2]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[3]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[4]

Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115

[5]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[6]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[7]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[8]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[9]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[10]

Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052

[11]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

[12]

Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

[13]

V. A. Dougalis, D. E. Mitsotakis, J.-C. Saut. On initial-boundary value problems for a Boussinesq system of BBM-BBM type in a plane domain. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1191-1204. doi: 10.3934/dcds.2009.23.1191

[14]

Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure & Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046

[15]

Runzhang Xu, Mingyou Zhang, Shaohua Chen, Yanbing Yang, Jihong Shen. The initial-boundary value problems for a class of sixth order nonlinear wave equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5631-5649. doi: 10.3934/dcds.2017244

[16]

Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 177-189. doi: 10.3934/dcdss.2014.7.177

[17]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[18]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

[19]

Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic & Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021

[20]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (272)
  • HTML views (1055)
  • Cited by (1)

Other articles
by authors

[Back to Top]