2017, 22(10): 3671-3689. doi: 10.3934/dcdsb.2017148

Area preserving geodesic curvature driven flow of closed curves on a surface

1. 

Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, Prague, 12000, Czech Republic

2. 

Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina, 842 48, Bratislava, Slovakia

* Corresponding author: Miroslav Kolář

Received  December 2016 Revised  March 2017 Published  April 2017

Fund Project: The first author is supported by the grant No. 14-36566G of the Czech Science Foundation and by the grant No. 15-27178A of Ministry of Health of the Czech Republic

We investigate a non-local geometric flow preserving surface area enclosed by a curve on a given surface evolved in the normal direction by the geodesic curvature and the external force. We show how such a flow of surface curves can be projected into a flow of planar curves with the non-local normal velocity. We prove that the surface area preserving flow decreases the length of the evolved surface curves. Local existence and continuation of classical smooth solutions to the governing system of partial differential equations is analysed as well. Furthermore, we propose a numerical method of flowing finite volume for spatial discretization in combination with the Runge-Kutta method for solving the resulting system. Several computational examples demonstrate variety of evolution of surface curves and the order of convergence.

Citation: Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148
References:
[1]

S. Allen, J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085-1095. doi: 10.1016/0001-6160(79)90196-2.

[2]

S. Angenent, Nonlinear analytic semiflows, Proc. R. Soc. Edinb., Sect. A, 115 (1990), 91-107. doi: 10.1017/S0308210500024598.

[3]

M. Beneš, Diffuse-interface treatment of the anisotropic mean-curvature flow, Appl. Math., 48 (2003), 437-453. doi: 10.1023/B:APOM.0000024485.24886.b9.

[4]

M. Beneš, M. Kimura, P. Pauš, D. Ševčovič, T. Tsujikawa, S. Yazaki, Application of a curvature adjusted method in image segmentation, Bull. Inst. Math. Acad. Sinica (N. S.), 3 (2008), 509-523.

[5]

M. Beneš, J. Kratochvíl, J. Křišt'an, V. Minárik, P. Pauš, A parametric simulation method for discrete dislocation dynamics, Eur. Phys. J. ST, 177 (2009), 177-192.

[6]

M. Beneš, S. Yazaki, M. Kimura, Computational studies of non-local anisotropic Allen-Cahn equation, Math. Bohemica, 136 (2011), 429-437.

[7]

L. Bronsard, B. Stoth, Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28 (1997), 769-807. doi: 10.1137/S0036141094279279.

[8]

J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. Ⅲ. Nucleation of a two-component incompressible fluid, J. Chem. Phys., 31 (1959), 688-699. doi: 10.1002/9781118788295.ch5.

[9]

M. C. Dallaston and S. W. McCue, A curve shortening flow rule for closed embedded plane curves with a prescribed rate of change in enclosed area Proc. R. Soc. A 472 (2016), 20150629, 15 pp. doi: 10.1098/rspa.2015.0629.

[10]

K. Deckelnick, Parametric mean curvature evolution with a Dirichlet boundary condition, J. Reine Angew. Math., 459 (1995), 37-60. doi: 10.1515/crll.1995.459.37.

[11]

I. C. Dolcetta, S. F. Vita, R. March, Area preserving curve shortening flows: From phase separation to image processing, Interfaces Free Bound., 4 (2002), 325-343. doi: 10.4171/IFB/64.

[12]

J. Escher, G. Simonett, The volume preserving mean curvature flow near spheres, Proc. Amer. Math. Soc., 126 (1998), 2789-2796. doi: 10.1090/S0002-9939-98-04727-3.

[13]

S. Esedoḡlu, S. Ruuth, R. Tsai, Threshold dynamics for high order geometric motions, Interfaces Free Bound., 10 (2008), 263-282. doi: 10.4171/IFB/189.

[14]

M. Gage, On an area-preserving evolution equation for plane curves, Contemp. Math., 51 (1986), 51-62. doi: 10.1090/conm/051/848933.

[15]

M. Henry, D. Hilhorst, M. Mimura, A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 125-154. doi: 10.3934/dcdss.2011.4.125.

[16]

M. Kolář, M. Beneš, D. Ševčovič, Computational analysis of the conserved curvature driven flow for open curves in the plane, Math. Comput. Simulation, 126 (2016), 1-13.

[17]

C. Kublik, S. Esedoḡlu, J. A. Fessler, Algorithms for area preserving flows, SIAM J. Sci. Comput., 33 (2011), 2382-2401. doi: 10.1137/100815542.

[18]

A. Lunardi, Abstract quasilinear parabolic equations, Math. Ann., 267 (1984), 395-416. doi: 10.1007/BF01456097.

[19] I. V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy, 2 edition, World Scientific Publishing Company, 2004.
[20]

J. McCoy, The surface area preserving mean curvature flow, Asian J. Math., 7 (2003), 7-30. doi: 10.4310/AJM.2003.v7.n1.a2.

[21]

K. Mikula, D. Ševčovič, Evolution of plane curves driven by a nonlinear function of curvature and anisotropy, SIAM J. Appl. Math., 61 (2001), 1473-1501. doi: 10.1137/S0036139999359288.

[22]

K. Mikula, D. Ševčovič, Computational and qualitative aspects of evolution of curves driven by curvature and external force, Comput. Vis. Sci., 6 (2004), 211-225. doi: 10.1007/s00791-004-0131-6.

[23]

K. Mikula, D. Ševčovič, A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Math. Methods Appl. Sci., 27 (2004), 1545-1565. doi: 10.1002/mma.514.

[24]

P. Pauš, M. Beneš, M. Kolář, J. Kratochvíl, Dynamics of dislocations described as evolving curves interacting with obstacles, Model. Simul. Mater. Sc., 24 (2016), 035003.

[25]

J. Rubinstein, P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48 (1992), 249-264. doi: 10.1093/imamat/48.3.249.

[26]

D. Ševčovič, Qualitative and quantitative aspects of curvature driven flows of planar curves, in Topics on Partial Differential Equations, Jindřich Nečas Cent. Math. Model. Lect. Notes, 2, Matfyzpress, Prague, 2007, 55-119.

[27]

D. Ševčovič, S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity, Japan. J. Ind. Appl. Math., 28 (2011), 413-442. doi: 10.1007/s13160-011-0046-9.

[28]

D. Ševčovič, S. Yazaki, Computational and qualitative aspects of motion of plane curves with a curvature adjusted tangential velocity, Math. Methods Appl. Sci., 35 (2012), 1784-1798. doi: 10.1002/mma.2554.

[29]

S. Yazaki, On the tangential velocity arising in a crystalline approximation of evolving plane curves, Kybernetika, 43 (2007), 913-918.

show all references

References:
[1]

S. Allen, J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085-1095. doi: 10.1016/0001-6160(79)90196-2.

[2]

S. Angenent, Nonlinear analytic semiflows, Proc. R. Soc. Edinb., Sect. A, 115 (1990), 91-107. doi: 10.1017/S0308210500024598.

[3]

M. Beneš, Diffuse-interface treatment of the anisotropic mean-curvature flow, Appl. Math., 48 (2003), 437-453. doi: 10.1023/B:APOM.0000024485.24886.b9.

[4]

M. Beneš, M. Kimura, P. Pauš, D. Ševčovič, T. Tsujikawa, S. Yazaki, Application of a curvature adjusted method in image segmentation, Bull. Inst. Math. Acad. Sinica (N. S.), 3 (2008), 509-523.

[5]

M. Beneš, J. Kratochvíl, J. Křišt'an, V. Minárik, P. Pauš, A parametric simulation method for discrete dislocation dynamics, Eur. Phys. J. ST, 177 (2009), 177-192.

[6]

M. Beneš, S. Yazaki, M. Kimura, Computational studies of non-local anisotropic Allen-Cahn equation, Math. Bohemica, 136 (2011), 429-437.

[7]

L. Bronsard, B. Stoth, Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28 (1997), 769-807. doi: 10.1137/S0036141094279279.

[8]

J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. Ⅲ. Nucleation of a two-component incompressible fluid, J. Chem. Phys., 31 (1959), 688-699. doi: 10.1002/9781118788295.ch5.

[9]

M. C. Dallaston and S. W. McCue, A curve shortening flow rule for closed embedded plane curves with a prescribed rate of change in enclosed area Proc. R. Soc. A 472 (2016), 20150629, 15 pp. doi: 10.1098/rspa.2015.0629.

[10]

K. Deckelnick, Parametric mean curvature evolution with a Dirichlet boundary condition, J. Reine Angew. Math., 459 (1995), 37-60. doi: 10.1515/crll.1995.459.37.

[11]

I. C. Dolcetta, S. F. Vita, R. March, Area preserving curve shortening flows: From phase separation to image processing, Interfaces Free Bound., 4 (2002), 325-343. doi: 10.4171/IFB/64.

[12]

J. Escher, G. Simonett, The volume preserving mean curvature flow near spheres, Proc. Amer. Math. Soc., 126 (1998), 2789-2796. doi: 10.1090/S0002-9939-98-04727-3.

[13]

S. Esedoḡlu, S. Ruuth, R. Tsai, Threshold dynamics for high order geometric motions, Interfaces Free Bound., 10 (2008), 263-282. doi: 10.4171/IFB/189.

[14]

M. Gage, On an area-preserving evolution equation for plane curves, Contemp. Math., 51 (1986), 51-62. doi: 10.1090/conm/051/848933.

[15]

M. Henry, D. Hilhorst, M. Mimura, A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 125-154. doi: 10.3934/dcdss.2011.4.125.

[16]

M. Kolář, M. Beneš, D. Ševčovič, Computational analysis of the conserved curvature driven flow for open curves in the plane, Math. Comput. Simulation, 126 (2016), 1-13.

[17]

C. Kublik, S. Esedoḡlu, J. A. Fessler, Algorithms for area preserving flows, SIAM J. Sci. Comput., 33 (2011), 2382-2401. doi: 10.1137/100815542.

[18]

A. Lunardi, Abstract quasilinear parabolic equations, Math. Ann., 267 (1984), 395-416. doi: 10.1007/BF01456097.

[19] I. V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy, 2 edition, World Scientific Publishing Company, 2004.
[20]

J. McCoy, The surface area preserving mean curvature flow, Asian J. Math., 7 (2003), 7-30. doi: 10.4310/AJM.2003.v7.n1.a2.

[21]

K. Mikula, D. Ševčovič, Evolution of plane curves driven by a nonlinear function of curvature and anisotropy, SIAM J. Appl. Math., 61 (2001), 1473-1501. doi: 10.1137/S0036139999359288.

[22]

K. Mikula, D. Ševčovič, Computational and qualitative aspects of evolution of curves driven by curvature and external force, Comput. Vis. Sci., 6 (2004), 211-225. doi: 10.1007/s00791-004-0131-6.

[23]

K. Mikula, D. Ševčovič, A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Math. Methods Appl. Sci., 27 (2004), 1545-1565. doi: 10.1002/mma.514.

[24]

P. Pauš, M. Beneš, M. Kolář, J. Kratochvíl, Dynamics of dislocations described as evolving curves interacting with obstacles, Model. Simul. Mater. Sc., 24 (2016), 035003.

[25]

J. Rubinstein, P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48 (1992), 249-264. doi: 10.1093/imamat/48.3.249.

[26]

D. Ševčovič, Qualitative and quantitative aspects of curvature driven flows of planar curves, in Topics on Partial Differential Equations, Jindřich Nečas Cent. Math. Model. Lect. Notes, 2, Matfyzpress, Prague, 2007, 55-119.

[27]

D. Ševčovič, S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity, Japan. J. Ind. Appl. Math., 28 (2011), 413-442. doi: 10.1007/s13160-011-0046-9.

[28]

D. Ševčovič, S. Yazaki, Computational and qualitative aspects of motion of plane curves with a curvature adjusted tangential velocity, Math. Methods Appl. Sci., 35 (2012), 1784-1798. doi: 10.1002/mma.2554.

[29]

S. Yazaki, On the tangential velocity arising in a crystalline approximation of evolving plane curves, Kybernetika, 43 (2007), 913-918.

Figure 1.  Illustration of a curve $\mathcal{G}_t$ on a given surface $\mathcal{M}$ and its projection $\Gamma_t$ to plane
Figure 2.  Discretization of a segment of a curve by flowing finite volumes
Figure 3.  Left: the initial curve $\mathcal{G}_{ini}$ (dashed) and the final curve $\mathcal{G}_T$ at $T = 10$ (solid) and several intermediate curves $\mathcal{G}_t$ (dotted). The underlying surface $\mathcal{M}$ is plotted in gray color. Right: time evolution of the projected planar curves $\Gamma_t$ (see Example 1)
Figure 4.  Left: the initial curve $\mathcal{G}_{ini}$ (dashed) and the final curve $\mathcal{G}_T$ at $T = 30$ (solid). The underlying surface $\mathcal{M}$ is plotted in gray color. Right: time evolution of the projected planar curves $\Gamma_t$ (see Example 2)
Figure 5.  Left: the initial curve $\mathcal{G}_{ini}$ (dashed) and the final curve $\mathcal{G}_T$ at $T = 8$ (solid) are presented. The surface $\mathcal{M}$ is plotted in gray color. Right: time evolution of the projected planar curves $\Gamma_t$ (see Example 3)
Figure 6.  Left: the initial curve $\mathcal{G}_{ini}$ (dashed) and the final curve $\mathcal{G}_T$ at $T = 15$ (solid) are shown. The surface $\mathcal{M}$ is plotted in gray. Right: Time evolution of the projected planar curves $\Gamma_t$ (see Example 4)
Table 1.  Settings of computational examples
Ex. $\mathbf{X}_{ini}, u \in [0,1]$ $\varphi$
1 $\mathbf{X}_{ini} = (\frac14 + r(u) \cos(2 \pi u), -\frac14 + r(u) \sin(2 \pi u))^T$ $\varphi(x,y) = \sqrt{4 - x^2 - y^2}$
2 $\mathbf{X}_{ini} = (\cos(2 \pi u), \frac1{10} + \sin(2 \pi u))^T$ $\varphi(x,y) = y^2$
3 $\mathbf{X}_{ini} = (\cos(2 \pi u), \frac15 + \sin(2 \pi u))^T$ $\varphi(x,y) = \sin(\pi y)$
4 $\mathbf{X}_{ini} = (\frac12 \cos(2 \pi u), \sin(2 \pi u))^T$ $\varphi(x,y) = x^2 - y^4$
Ex. $\mathbf{X}_{ini}, u \in [0,1]$ $\varphi$
1 $\mathbf{X}_{ini} = (\frac14 + r(u) \cos(2 \pi u), -\frac14 + r(u) \sin(2 \pi u))^T$ $\varphi(x,y) = \sqrt{4 - x^2 - y^2}$
2 $\mathbf{X}_{ini} = (\cos(2 \pi u), \frac1{10} + \sin(2 \pi u))^T$ $\varphi(x,y) = y^2$
3 $\mathbf{X}_{ini} = (\cos(2 \pi u), \frac15 + \sin(2 \pi u))^T$ $\varphi(x,y) = \sin(\pi y)$
4 $\mathbf{X}_{ini} = (\frac12 \cos(2 \pi u), \sin(2 \pi u))^T$ $\varphi(x,y) = x^2 - y^4$
Table 2.  Table of EOCs for Example 1
$M$ $error_{max}$EOC $error_{L1}$EOC
100 $3.2397 \cdot 10^{-2}$- $3.2516 \cdot 10^{-2}$-
200 $8.2467 \cdot 10^{-3}$1.97408.2767 $\cdot 10^{-3}$1.9740
300 $3.6408 \cdot 10^{-3}$2.01653.6542 $\cdot 10^{-3}$2.0164
400 $2.0411 \cdot 10^{-3}$2.01182.0485 $\cdot 10^{-3}$2.0117
500 $1.3033 \cdot 10^{-3}$2.01031.3081 $\cdot 10^{-3}$2.0102
$M$ $error_{max}$EOC $error_{L1}$EOC
100 $3.2397 \cdot 10^{-2}$- $3.2516 \cdot 10^{-2}$-
200 $8.2467 \cdot 10^{-3}$1.97408.2767 $\cdot 10^{-3}$1.9740
300 $3.6408 \cdot 10^{-3}$2.01653.6542 $\cdot 10^{-3}$2.0164
400 $2.0411 \cdot 10^{-3}$2.01182.0485 $\cdot 10^{-3}$2.0117
500 $1.3033 \cdot 10^{-3}$2.01031.3081 $\cdot 10^{-3}$2.0102
Table 3.  Table of EOCs for Example 2
$M$ $error_{max}$EOC $error_{L1}$EOC
100 $1.4812 \cdot 10^{-3}$- $1.4839 \cdot 10^{-3}$-
200 $3.7049 \cdot 10^{-4}$1.9993 $3.7092 \cdot 10^{-4}$2.0002
300 $1.6453 \cdot 10^{-4}$2.0019 $1.6471 \cdot 10^{-4}$2.0022
400 $8.2431 \cdot 10^{-5}$2.0045 $9.2525 \cdot 10^{-5}$2.0046
500 $5.9055 \cdot 10^{-5}$2.0077 $5.9114 \cdot 10^{-5}$2.0077
$M$ $error_{max}$EOC $error_{L1}$EOC
100 $1.4812 \cdot 10^{-3}$- $1.4839 \cdot 10^{-3}$-
200 $3.7049 \cdot 10^{-4}$1.9993 $3.7092 \cdot 10^{-4}$2.0002
300 $1.6453 \cdot 10^{-4}$2.0019 $1.6471 \cdot 10^{-4}$2.0022
400 $8.2431 \cdot 10^{-5}$2.0045 $9.2525 \cdot 10^{-5}$2.0046
500 $5.9055 \cdot 10^{-5}$2.0077 $5.9114 \cdot 10^{-5}$2.0077
Table 4.  Table of EOCs for Example 3
$M$ $error_{max}$EOC $error_{L1}$EOC
100 $4.3505 \cdot 10^{-3}$- $4.7156 \cdot 10^{-3}$-
200 $9.4649 \cdot 10^{-4}$2.2005 $9.5944 \cdot 10^{-4}$2.2972
300 $4.1813 \cdot 10^{-4}$2.0149 $4.2481 \cdot 10^{-4}$2.0082
400 $2.3506 \cdot 10^{-4}$2.0021 $2.3885 \cdot 10^{-4}$2.0015
500 $1.5050 \cdot 10^{-4}$1.9980 $1.5293 \cdot 10^{-4}$1.9980
$M$ $error_{max}$EOC $error_{L1}$EOC
100 $4.3505 \cdot 10^{-3}$- $4.7156 \cdot 10^{-3}$-
200 $9.4649 \cdot 10^{-4}$2.2005 $9.5944 \cdot 10^{-4}$2.2972
300 $4.1813 \cdot 10^{-4}$2.0149 $4.2481 \cdot 10^{-4}$2.0082
400 $2.3506 \cdot 10^{-4}$2.0021 $2.3885 \cdot 10^{-4}$2.0015
500 $1.5050 \cdot 10^{-4}$1.9980 $1.5293 \cdot 10^{-4}$1.9980
Table 5.  Table of EOCs for Example 4
$M$ $error_{max}$EOC $error_{L1}$EOC
100 $1.8882 \cdot 10^{-3}$- $1.9422 \cdot 10^{-3}$-
200 $4.7176 \cdot 10^{-4}$2.0009 $4.8494 \cdot 10^{-4}$2.0018
300 $2.0979 \cdot 10^{-4}$1.9986 $2.1563 \cdot 10^{-4}$1.9988
400 $1.1808 \cdot 10^{-4}$1.9978 $1.2136 \cdot 10^{-4}$1.9980
500 $7.5628 \cdot 10^{-5}$1.9966 $7.7728 \cdot 10^{-5}$1.9968
$M$ $error_{max}$EOC $error_{L1}$EOC
100 $1.8882 \cdot 10^{-3}$- $1.9422 \cdot 10^{-3}$-
200 $4.7176 \cdot 10^{-4}$2.0009 $4.8494 \cdot 10^{-4}$2.0018
300 $2.0979 \cdot 10^{-4}$1.9986 $2.1563 \cdot 10^{-4}$1.9988
400 $1.1808 \cdot 10^{-4}$1.9978 $1.2136 \cdot 10^{-4}$1.9980
500 $7.5628 \cdot 10^{-5}$1.9966 $7.7728 \cdot 10^{-5}$1.9968
[1]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[2]

Marie Henry, Danielle Hilhorst, Masayasu Mimura. A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 125-154. doi: 10.3934/dcdss.2011.4.125

[3]

Jun Li, Qi Wang. Flow driven dynamics of sheared flowing polymer-particulate nanocomposites. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1359-1382. doi: 10.3934/dcds.2010.26.1359

[4]

Bendong Lou. Spiral rotating waves of a geodesic curvature flow on the unit sphere. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 933-942. doi: 10.3934/dcdsb.2012.17.933

[5]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[6]

Changfeng Gui, Huaiyu Jian, Hongjie Ju. Properties of translating solutions to mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 441-453. doi: 10.3934/dcds.2010.28.441

[7]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[8]

Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643

[9]

Bendong Lou. Traveling wave solutions of a generalized curvature flow equation in the plane. Conference Publications, 2007, 2007 (Special) : 687-693. doi: 10.3934/proc.2007.2007.687

[10]

Hongjie Ju, Jian Lu, Huaiyu Jian. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 963-973. doi: 10.3934/cpaa.2010.9.963

[11]

Yong Chen, Hongjun Gao, María J. Garrido–Atienza, Björn Schmalfuss. Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than $1/2$ and random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 79-98. doi: 10.3934/dcds.2014.34.79

[12]

Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107

[13]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[14]

Walter Allegretto, Yanping Lin, Shuqing Ma. Hölder continuous solutions of an obstacle thermistor problem. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 983-997. doi: 10.3934/dcdsb.2004.4.983

[15]

Joachim Escher, Piotr B. Mucha. The surface diffusion flow on rough phase spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 431-453. doi: 10.3934/dcds.2010.26.431

[16]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Ghost effect by curvature in planar Couette flow. Kinetic & Related Models, 2011, 4 (1) : 109-138. doi: 10.3934/krm.2011.4.109

[17]

Vladimir S. Matveev and Petar J. Topalov. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic Research Announcements, 2000, 6: 98-104.

[18]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[19]

Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173

[20]

Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (4)
  • HTML views (2)
  • Cited by (0)

[Back to Top]