March 2017, 22(2): 491-506. doi: 10.3934/dcdsb.2017024

Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks

Laboratory ACEDP, Djillali Liabes university, 22000 Sidi Bel Abbes, Algeria

* Corresponding author: hakemali@yahoo.com

Received  October 2015 Revised  October 2016 Published  December 2016

Fund Project: The authors are supported by CNEPRU-ALGERIA

In this paper, we investigate the nonlinear wave equation in a bounded domain with a time-varying delay term in the weakly nonlinear internal feedback
$\left(|u_{t}|^{\gamma-2}u_{t}\right)_{t}-Lu-\int_{0}^{t}g(t-s)L u(s)ds+ \mu_{1} \psi(u_{t}(x, t))+ \mu_{2} \psi(u_{t}(x, t-\tau(t)))=0.$
The asymptotic behavior of solutions is studied by using an appropriate Lyapunov functional. Moreover, we extend and improve the previous results in the literature.
Citation: Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024
References:
[1]

C. Abdallah, P. Dorato, J. Benitez-Read and R. Byrne, Delayed Positive Feedback Can Stabilize Oscillatory System, ACC, San Francisco, (1993), 3106-3107.

[2] V. I. Arnold, Mathematical Methods of Classical Mecanics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.
[3]

A. Benaissa and A. Guesmia, Energy decay for wave equations of ϕ-Laplacian type with weakly nonlinear dissipation, Electron. J. Differ. Equations, 2008 (2008), 1-22.

[4]

M. M. CavalcantiV. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, Jour. Diff. Equa., 236 (2007), 407-459. doi: 10.1016/j.jde.2007.02.004.

[5]

G. Chen, Control and stabilization for the wave equation in a bounded domain, Part Ⅰ, SIAM J. Control Optim., 17 (1979), 66-81. doi: 10.1137/0317007.

[6]

G. Chen, Control and stabilization for the wave equation in a bounded domain, Part Ⅱ, SIAM J. Control Optim., 19 (1981), 114-122. doi: 10.1137/0319009.

[7]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156. doi: 10.1137/0324007.

[8]

M. EllerJ. E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Computational. Appl. Math., 21 (2002), 135-165.

[9]

A. Haraux, Two remarks on dissipative hyperbolic problems, Research Notes in Mathematics, Pitman: Boston, MA, 122 (1985), 161-179.

[10]

T. Kato, Linear and quasilinear equations of evolution of hyperbolic type, Hyperbolicity, C. I. M. E. Summer Sch. , Springer, Heidelberg, 72 (2011), 125-191.

[11]

T. Kato, Abstract Differential Equations and Nonlinear Mixed Problems, Lezioni Fermiane, [Fermi Lectures]. Scuola Normale Superiore, Pisa 1985.

[12] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris, 1994.
[13]

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary dampin, Diff. Integr. Equa., 6 (1993), 507-533.

[14]

J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris, 1969.

[15]

W. J. Liu and E. Zuazua, Decay rates for dissipative wave equations, Ricerche di Matematica, 48 (1999), 61-75.

[16]

P. Martinez and J. Vancostenoble, Optimality of energy estimates for the wave equation with nonlinear boundary velocity feedbacks, SIAM J. Control Optim, 39 (2000), 776-797. doi: 10.1137/S0363012999354211.

[17]

M. Nakao, Decay of solutions of some nonlinear evolution equations, J. Math. Anal. Appl, 60 (1977), 542-549.

[18]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim, 45 (2006), 1561-1585. doi: 10.1137/060648891.

[19]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integr. Equat, 21 (2008), 935-958.

[20]

S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay, ESAIM Control Optim. Calc. Var, 16 (2010), 420-456. doi: 10.1051/cocv/2009007.

[21]

S. NicaiseC. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 693-722. doi: 10.3934/dcdss.2011.4.693.

[22]

S. NicaiseJ. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559-581. doi: 10.3934/dcdss.2009.2.559.

[23]

J. Y. Park and S. H. Park, General decay for a nonlinear beam equation with weak dissipation, J. Math. Phys. , 51 (2010), 073508, 8pp.

[24] W. Rudin, Real and Complex Analysis, second edition, McGraw-Hill, Inc, New York, 1974.
[25] F. G. Shinskey, Process Control Systems, McGraw-Hill Book Company, 1967.
[26]

I. H. Suh and Z. Bien, Use of time delay action in the controller design, IEEE Trans. Autom. Control, 25 (1980), 600-603.

[27]

C. Q. XuS. P. Yung and L. K. Li, Stabilization of the wave system with input delay in the boundary control, ESAIM Control Optim. Calc. Var, 12 (2006), 770-785. doi: 10.1051/cocv:2006021.

[28] Q. C. Zhong, Robust Control of Time-delay Systems, Springer, London, 2006.

show all references

References:
[1]

C. Abdallah, P. Dorato, J. Benitez-Read and R. Byrne, Delayed Positive Feedback Can Stabilize Oscillatory System, ACC, San Francisco, (1993), 3106-3107.

[2] V. I. Arnold, Mathematical Methods of Classical Mecanics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.
[3]

A. Benaissa and A. Guesmia, Energy decay for wave equations of ϕ-Laplacian type with weakly nonlinear dissipation, Electron. J. Differ. Equations, 2008 (2008), 1-22.

[4]

M. M. CavalcantiV. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, Jour. Diff. Equa., 236 (2007), 407-459. doi: 10.1016/j.jde.2007.02.004.

[5]

G. Chen, Control and stabilization for the wave equation in a bounded domain, Part Ⅰ, SIAM J. Control Optim., 17 (1979), 66-81. doi: 10.1137/0317007.

[6]

G. Chen, Control and stabilization for the wave equation in a bounded domain, Part Ⅱ, SIAM J. Control Optim., 19 (1981), 114-122. doi: 10.1137/0319009.

[7]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156. doi: 10.1137/0324007.

[8]

M. EllerJ. E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Computational. Appl. Math., 21 (2002), 135-165.

[9]

A. Haraux, Two remarks on dissipative hyperbolic problems, Research Notes in Mathematics, Pitman: Boston, MA, 122 (1985), 161-179.

[10]

T. Kato, Linear and quasilinear equations of evolution of hyperbolic type, Hyperbolicity, C. I. M. E. Summer Sch. , Springer, Heidelberg, 72 (2011), 125-191.

[11]

T. Kato, Abstract Differential Equations and Nonlinear Mixed Problems, Lezioni Fermiane, [Fermi Lectures]. Scuola Normale Superiore, Pisa 1985.

[12] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris, 1994.
[13]

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary dampin, Diff. Integr. Equa., 6 (1993), 507-533.

[14]

J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris, 1969.

[15]

W. J. Liu and E. Zuazua, Decay rates for dissipative wave equations, Ricerche di Matematica, 48 (1999), 61-75.

[16]

P. Martinez and J. Vancostenoble, Optimality of energy estimates for the wave equation with nonlinear boundary velocity feedbacks, SIAM J. Control Optim, 39 (2000), 776-797. doi: 10.1137/S0363012999354211.

[17]

M. Nakao, Decay of solutions of some nonlinear evolution equations, J. Math. Anal. Appl, 60 (1977), 542-549.

[18]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim, 45 (2006), 1561-1585. doi: 10.1137/060648891.

[19]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integr. Equat, 21 (2008), 935-958.

[20]

S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay, ESAIM Control Optim. Calc. Var, 16 (2010), 420-456. doi: 10.1051/cocv/2009007.

[21]

S. NicaiseC. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 693-722. doi: 10.3934/dcdss.2011.4.693.

[22]

S. NicaiseJ. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559-581. doi: 10.3934/dcdss.2009.2.559.

[23]

J. Y. Park and S. H. Park, General decay for a nonlinear beam equation with weak dissipation, J. Math. Phys. , 51 (2010), 073508, 8pp.

[24] W. Rudin, Real and Complex Analysis, second edition, McGraw-Hill, Inc, New York, 1974.
[25] F. G. Shinskey, Process Control Systems, McGraw-Hill Book Company, 1967.
[26]

I. H. Suh and Z. Bien, Use of time delay action in the controller design, IEEE Trans. Autom. Control, 25 (1980), 600-603.

[27]

C. Q. XuS. P. Yung and L. K. Li, Stabilization of the wave system with input delay in the boundary control, ESAIM Control Optim. Calc. Var, 12 (2006), 770-785. doi: 10.1051/cocv:2006021.

[28] Q. C. Zhong, Robust Control of Time-delay Systems, Springer, London, 2006.
[1]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[2]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[3]

Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481

[4]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[5]

Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020

[6]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[7]

Da Xu. Numerical solutions of viscoelastic bending wave equations with two term time kernels by Runge-Kutta convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2389-2416. doi: 10.3934/dcdsb.2017122

[8]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[9]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 991-1009. doi: 10.3934/dcdsb.2018139

[10]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[11]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[12]

Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky. Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences & Engineering, 2006, 3 (3) : 527-544. doi: 10.3934/mbe.2006.3.527

[13]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

[14]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[15]

Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559

[16]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

[17]

Min Chen, S. Dumont, Louis Dupaigne, Olivier Goubet. Decay of solutions to a water wave model with a nonlocal viscous dispersive term. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1473-1492. doi: 10.3934/dcds.2010.27.1473

[18]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[19]

Qiuping Lu, Zhi Ling. Least energy solutions for an elliptic problem involving sublinear term and peaking phenomenon. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2411-2429. doi: 10.3934/cpaa.2015.14.2411

[20]

Hongjie Dong, Seick Kim. Green's functions for parabolic systems of second order in time-varying domains. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1407-1433. doi: 10.3934/cpaa.2014.13.1407

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (20)
  • HTML views (89)
  • Cited by (0)

Other articles
by authors

[Back to Top]