January  2017, 22(1): 199-208. doi: 10.3934/dcdsb.2017010

Improved results on exponential stability of discrete-time switched delay systems

1. 

School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

2. 

Department of Mathematics and Statistics, Curtin University, Perth, WA 6845, Australia

3. 

School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China

* Corresponding author

Received  August 2015 Revised  May 2016 Published  December 2016

Fund Project: The work is supported by the National Natural Science Foundation of China (11171079) and the Australian Research Council (DP160102819)

In this paper, we study the exponential stability problem of discrete-time switched delay systems. Combining a multiple Lyapunov function method with a mode-dependent average dwell time technique, we develop novel sufficient conditions for exponential stability of the switched delay systems expressed by a set of numerically solvable linear matrix inequalities. Finally, numerical examples are presented to illustrate less conservativeness of the obtained results.

Citation: Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010
References:
[1]

M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. Automat. Control, 43 (1998), 475-482. doi: 10.1109/9.664150. Google Scholar

[2]

Q. ChenL. Yu and W. Zhang, Delay-dependent output feedback guaranteed cost control for uncertain discrete-time systems with multiple time-varying delays, Control Theory & Applications, 1 (2007), 97-103. doi: 10.1049/iet-cta:20050443. Google Scholar

[3]

J. DaafouzP. Riedinger and C. Lung, Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Trans. Automat. Control, 47 (2002), 1883-1887. doi: 10.1109/TAC.2002.804474. Google Scholar

[4]

R. A. DecarloM. S. BranickyS. Pettersson and B. Lennartson, Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE, 88 (2000), 1069-1082. doi: 10.1109/5.871309. Google Scholar

[5]

D. Liberzon, Switching in Systems and Control, Springer, 2003. doi: 10.1007/978-1-4612-0017-8. Google Scholar

[6]

D. LiberzonJ. P. Hespanha and A. S. Morse, Stability of switched systems: A Lie-algebraic condition, Systems & Control Letters, 37 (1999), 117-122. doi: 10.1016/S0167-6911(99)00012-2. Google Scholar

[7]

D. Liberzon and S. Morse, Basic problems in stability and design of switched systems, IEEE Control Syst., 19 (1999), 59-70. doi: 10.1109/37.793443. Google Scholar

[8]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automat. Control, 54 (2009), 308-322. doi: 10.1109/TAC.2008.2012009. Google Scholar

[9]

W. MichielsV. V. Assche and S. I. Niculescu, Stabilization of time-delay systems with a controlled time-varying delay and applications, IEEE Trans. Automat. Control, 50 (2005), 493-504. doi: 10.1109/TAC.2005.844723. Google Scholar

[10]

S. Pettersson, Synthesis of switched linear systems, Proceedings on 42nd IEEE Conference on Decision and Control, (2003), 5283-5288. doi: 10.1109/CDC.2003.1272477. Google Scholar

[11]

X. SunJ. Zhao and D. J. Hill, Stability and $l_2$-gain analysis for switched delay systems: A delay-dependent method, Automatica, 42 (2006), 1769-1774. doi: 10.1016/j.automatica.2006.05.007. Google Scholar

[12]

M. Wicks and R. Decarlo, Solution of coupled Lyapunov equations for the stabilization of multimodal linear systems, Proceedings of the American Control Conference, 1997 (1997), 1709-1713. doi: 10.1109/ACC.1997.610876. Google Scholar

[13]

X. Xie, H. Xu and R. Zhang, Exponential stabilization of impulsive switched systems with time delays using guaranteed cost control Abstract and Applied Analysis, 2014 (2014), Art. ID 126836, 8 pp. doi: 10.1155/2014/126836. Google Scholar

[14]

H. XuX. Liu and K. L. Teo, Delay independent stability criteria of impulsive switched systems with time-invariant delays, Math. Comput. Model., 47 (2008), 372-379. doi: 10.1016/j.mcm.2007.04.011. Google Scholar

[15]

H. XuX. Liu and K. L. Teo, Robust stability analysis of guaranteed cost control for impulsive switched systems, IEEE Trans. Syst., Man, and Cyber.-Part B, 35 (2008), 1419-1422. Google Scholar

[16]

H. Xu, X. Xie and L. Shi, An MDADT-based approach for l2-gain analysis of discrete-time switched delay systems Mathematical Problems in Engineering, 2016 (2016), Art. ID 1673959, 8 pp. doi: 10.1155/2016/1673959. Google Scholar

[17]

H. Yan, Robust exponential stability and l2-gain for switched discrete-time nonlinear cascade systems, 33rd Chinese Control Conference, (2014), 4198-4203. Google Scholar

[18]

G. ZhaiX. Chen and H. Lin, Stability and l2 gain analysis of discrete-time switched systems, Transactions of the Institute of Systems, Control and Information engineers, 15 (2002), 117-125. Google Scholar

[19]

G. ZhaiB. HuK. Yasuda and A. N. Michel, Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach, American Control Conference, 1 (2000), 200-204. doi: 10.1109/ACC.2000.878825. Google Scholar

[20]

L. ZhangE. K. Boukas and P. Shi, Exponential H filtering for uncertain discrete-time switched linear systems with average dwell time: A μ-dependent approach', International Journal of Robust and Nonlinear Control, 18 (2008), 1188-1207. doi: 10.1002/rnc.1276. Google Scholar

[21]

W. Zhang and L. Yu, Stability analysis for discrete-time switched time-delay system, Automatica, 45 (2009), 2265-2271. doi: 10.1016/j.automatica.2009.05.027. Google Scholar

[22]

X. ZhaoL. ZhangP. Shi and M. Liu, Stability and stabilization of switched linear systems with mode-dependent average dwell time, IEEE Trans. Automat. Control, 57 (2012), 1809-1815. doi: 10.1109/TAC.2011.2178629. Google Scholar

show all references

References:
[1]

M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. Automat. Control, 43 (1998), 475-482. doi: 10.1109/9.664150. Google Scholar

[2]

Q. ChenL. Yu and W. Zhang, Delay-dependent output feedback guaranteed cost control for uncertain discrete-time systems with multiple time-varying delays, Control Theory & Applications, 1 (2007), 97-103. doi: 10.1049/iet-cta:20050443. Google Scholar

[3]

J. DaafouzP. Riedinger and C. Lung, Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Trans. Automat. Control, 47 (2002), 1883-1887. doi: 10.1109/TAC.2002.804474. Google Scholar

[4]

R. A. DecarloM. S. BranickyS. Pettersson and B. Lennartson, Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE, 88 (2000), 1069-1082. doi: 10.1109/5.871309. Google Scholar

[5]

D. Liberzon, Switching in Systems and Control, Springer, 2003. doi: 10.1007/978-1-4612-0017-8. Google Scholar

[6]

D. LiberzonJ. P. Hespanha and A. S. Morse, Stability of switched systems: A Lie-algebraic condition, Systems & Control Letters, 37 (1999), 117-122. doi: 10.1016/S0167-6911(99)00012-2. Google Scholar

[7]

D. Liberzon and S. Morse, Basic problems in stability and design of switched systems, IEEE Control Syst., 19 (1999), 59-70. doi: 10.1109/37.793443. Google Scholar

[8]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automat. Control, 54 (2009), 308-322. doi: 10.1109/TAC.2008.2012009. Google Scholar

[9]

W. MichielsV. V. Assche and S. I. Niculescu, Stabilization of time-delay systems with a controlled time-varying delay and applications, IEEE Trans. Automat. Control, 50 (2005), 493-504. doi: 10.1109/TAC.2005.844723. Google Scholar

[10]

S. Pettersson, Synthesis of switched linear systems, Proceedings on 42nd IEEE Conference on Decision and Control, (2003), 5283-5288. doi: 10.1109/CDC.2003.1272477. Google Scholar

[11]

X. SunJ. Zhao and D. J. Hill, Stability and $l_2$-gain analysis for switched delay systems: A delay-dependent method, Automatica, 42 (2006), 1769-1774. doi: 10.1016/j.automatica.2006.05.007. Google Scholar

[12]

M. Wicks and R. Decarlo, Solution of coupled Lyapunov equations for the stabilization of multimodal linear systems, Proceedings of the American Control Conference, 1997 (1997), 1709-1713. doi: 10.1109/ACC.1997.610876. Google Scholar

[13]

X. Xie, H. Xu and R. Zhang, Exponential stabilization of impulsive switched systems with time delays using guaranteed cost control Abstract and Applied Analysis, 2014 (2014), Art. ID 126836, 8 pp. doi: 10.1155/2014/126836. Google Scholar

[14]

H. XuX. Liu and K. L. Teo, Delay independent stability criteria of impulsive switched systems with time-invariant delays, Math. Comput. Model., 47 (2008), 372-379. doi: 10.1016/j.mcm.2007.04.011. Google Scholar

[15]

H. XuX. Liu and K. L. Teo, Robust stability analysis of guaranteed cost control for impulsive switched systems, IEEE Trans. Syst., Man, and Cyber.-Part B, 35 (2008), 1419-1422. Google Scholar

[16]

H. Xu, X. Xie and L. Shi, An MDADT-based approach for l2-gain analysis of discrete-time switched delay systems Mathematical Problems in Engineering, 2016 (2016), Art. ID 1673959, 8 pp. doi: 10.1155/2016/1673959. Google Scholar

[17]

H. Yan, Robust exponential stability and l2-gain for switched discrete-time nonlinear cascade systems, 33rd Chinese Control Conference, (2014), 4198-4203. Google Scholar

[18]

G. ZhaiX. Chen and H. Lin, Stability and l2 gain analysis of discrete-time switched systems, Transactions of the Institute of Systems, Control and Information engineers, 15 (2002), 117-125. Google Scholar

[19]

G. ZhaiB. HuK. Yasuda and A. N. Michel, Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach, American Control Conference, 1 (2000), 200-204. doi: 10.1109/ACC.2000.878825. Google Scholar

[20]

L. ZhangE. K. Boukas and P. Shi, Exponential H filtering for uncertain discrete-time switched linear systems with average dwell time: A μ-dependent approach', International Journal of Robust and Nonlinear Control, 18 (2008), 1188-1207. doi: 10.1002/rnc.1276. Google Scholar

[21]

W. Zhang and L. Yu, Stability analysis for discrete-time switched time-delay system, Automatica, 45 (2009), 2265-2271. doi: 10.1016/j.automatica.2009.05.027. Google Scholar

[22]

X. ZhaoL. ZhangP. Shi and M. Liu, Stability and stabilization of switched linear systems with mode-dependent average dwell time, IEEE Trans. Automat. Control, 57 (2012), 1809-1815. doi: 10.1109/TAC.2011.2178629. Google Scholar

Figure 1.  State trajectories of switched system under ADT switching with $\tau _a = 2$
Figure 2.  State trajectories of switched system under MDADT switching with $\tau _{a1} = 1, \tau _{a2} = 1, \tau _{a3} = 1, \tau _{a4} = 2$
Table 1.  Computation Results For The Switched Delay System (9) Under Two Different Switching Schemes
Switching SchemesADT SwitchingMDADT Switching
Criteria for controller designTheorem 1 in [19]Theorem 1 in this paper
Switching signals$\tau _a^* = 0.1175$
$\mu = 1.1$
$\lambda \le 1.5$
$\tau _{a1}^* = 0.0312$, $\tau _{a2}^* = 0.0409$,
$\tau _{a3}^* = 0.0642$, $\tau _{a4}^* = 0.1175$,
${\mu _1} = {\mu _2} = {\mu _3} = {\mu _4} = 1.1$,
${\lambda _1} \le 4.6$, ${\lambda _2} \le 3.2$,
${\lambda _3} \le 2.1$, ${\lambda _4} \le 1.5$
Switching SchemesADT SwitchingMDADT Switching
Criteria for controller designTheorem 1 in [19]Theorem 1 in this paper
Switching signals$\tau _a^* = 0.1175$
$\mu = 1.1$
$\lambda \le 1.5$
$\tau _{a1}^* = 0.0312$, $\tau _{a2}^* = 0.0409$,
$\tau _{a3}^* = 0.0642$, $\tau _{a4}^* = 0.1175$,
${\mu _1} = {\mu _2} = {\mu _3} = {\mu _4} = 1.1$,
${\lambda _1} \le 4.6$, ${\lambda _2} \le 3.2$,
${\lambda _3} \le 2.1$, ${\lambda _4} \le 1.5$
[1]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[2]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[3]

Huan Su, Pengfei Wang, Xiaohua Ding. Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 253-269. doi: 10.3934/dcdsb.2016.21.253

[4]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[5]

Simone Fiori. Auto-regressive moving-average discrete-time dynamical systems and autocorrelation functions on real-valued Riemannian matrix manifolds. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2785-2808. doi: 10.3934/dcdsb.2014.19.2785

[6]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[7]

Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discrete-time SI and SIS epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (4) : 699-710. doi: 10.3934/mbe.2007.4.699

[8]

Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Frame-bound priority scheduling in discrete-time queueing systems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 767-788. doi: 10.3934/jimo.2011.7.767

[9]

Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129

[10]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024

[11]

Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213

[12]

B. Cantó, C. Coll, A. Herrero, E. Sánchez, N. Thome. Pole-assignment of discrete time-delay systems with symmetries. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 641-649. doi: 10.3934/dcdsb.2006.6.641

[13]

Elena K. Kostousova. On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty. Conference Publications, 2011, 2011 (Special) : 864-873. doi: 10.3934/proc.2011.2011.864

[14]

Qingling Zhang, Guoliang Wang, Wanquan Liu, Yi Zhang. Stabilization of discrete-time Markovian jump systems with partially unknown transition probabilities. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1197-1211. doi: 10.3934/dcdsb.2011.16.1197

[15]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[16]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[17]

Deepak Kumar, Ahmad Jazlan, Victor Sreeram, Roberto Togneri. Partial fraction expansion based frequency weighted model reduction for discrete-time systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 329-337. doi: 10.3934/naco.2016015

[18]

Elena K. Kostousova. On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques. Conference Publications, 2015, 2015 (special) : 723-732. doi: 10.3934/proc.2015.0723

[19]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[20]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (12)
  • HTML views (53)
  • Cited by (1)

Other articles
by authors

[Back to Top]