
Previous Article
Linear approximation of nonlinear Schrödinger equations driven by cylindrical Wiener processes
 DCDSB Home
 This Issue

Next Article
Approximation for random stable manifolds under multiplicative correlated noises
Taylor schemes for rough differential equations and fractional diffusions
1.  Department of Mathematics, The University of Kansas, Lawrence, Kansas, 66045, United States, United States, United States 
References:
[1] 
F. Baudoin and X. Zhang, Taylor expansion for the solution of a stochastic differential equation driven by fractional Brownian motions,, Electron. J. Probab., 17 (2012), 1. doi: 10.1214/EJP.v172136. 
[2] 
Q. Feng and X. Zhang, Taylor expansions and Castell estimates for solutions of stochastic differential equations driven by rough paths, preprint,, , (). 
[3] 
P. K. Friz and N. Victoir, Multidimentional Stochastic Processes as Rough Paths, Theory and Applications,, vol. 120 of Cambridge studies in advanced mathematics, (2010). doi: 10.1017/CBO9780511845079. 
[4] 
M. Gradinaru and I. Nourdin, Milstein's type schemes for fractional SDEs,, Ann. Inst. Henri Poincaré Probab. Stat., 45 (2009), 1085. doi: 10.1214/08AIHP196. 
[5] 
Y. Hu, Strong and weak order of time discretization schemes of stochastic differential equations,, Séminaire de Probabilités XXX, 1626 (1996), 218. doi: 10.1007/BFb0094650. 
[6] 
Y. Hu, Multiple integrals and expansion of solutions of differential equations driven by rough paths and by fractional Brownian motions,, Stochastics, 85 (2013), 859. doi: 10.1080/17442508.2012.673615. 
[7] 
Y. Hu, Y. Liu and D. Nualart, Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions,, Ann. Appl. Probab., 26 (2016), 1147. doi: 10.1214/15AAP1114. 
[8] 
Y. Hu and B. Øksendal, Fractional white noise calculus and applications to finance,, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6 (2003), 1. doi: 10.1142/S0219025703001110. 
[9] 
S. Janson, Gaussian Hilbert Spaces,, Cambridge University Press, (1997). doi: 10.1017/CBO9780511526169. 
[10] 
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,, Springer, (1992). doi: 10.1007/9783662126165. 
[11] 
T. Lyons, Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young,, Math. Res. Lett., 1 (1994), 451. doi: 10.4310/MRL.1994.v1.n4.a5. 
[12] 
T. Lyons, Differential equations driven by rough signals,, Rev. Mat. Iberoamericana, 14 (1998), 215. doi: 10.4171/RMI/240. 
[13] 
Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes,, SpringerVerlag, (2008). doi: 10.1007/9783540758730. 
[14] 
A. Neuenkirch and I. Nourdin, Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion,, J. Theoret. Probab., 20 (2007), 871. doi: 10.1007/s1095900700830. 
[15] 
D. Nualart and A. Rascanu, Differential equations driven by fractional Brownian motion,, Collect. Math., 53 (2002), 55. 
[16] 
C. Reutenauer, Free Lie Algebra,, vol. 7 of London Mathematical Society Monographs, (1993). 
[17] 
M. Zähle, Integration with respect to fractal functions and stochastic calculus. I.,, Probab. Theory Related Fields, 111 (1998), 333. doi: 10.1007/s004400050171. 
show all references
References:
[1] 
F. Baudoin and X. Zhang, Taylor expansion for the solution of a stochastic differential equation driven by fractional Brownian motions,, Electron. J. Probab., 17 (2012), 1. doi: 10.1214/EJP.v172136. 
[2] 
Q. Feng and X. Zhang, Taylor expansions and Castell estimates for solutions of stochastic differential equations driven by rough paths, preprint,, , (). 
[3] 
P. K. Friz and N. Victoir, Multidimentional Stochastic Processes as Rough Paths, Theory and Applications,, vol. 120 of Cambridge studies in advanced mathematics, (2010). doi: 10.1017/CBO9780511845079. 
[4] 
M. Gradinaru and I. Nourdin, Milstein's type schemes for fractional SDEs,, Ann. Inst. Henri Poincaré Probab. Stat., 45 (2009), 1085. doi: 10.1214/08AIHP196. 
[5] 
Y. Hu, Strong and weak order of time discretization schemes of stochastic differential equations,, Séminaire de Probabilités XXX, 1626 (1996), 218. doi: 10.1007/BFb0094650. 
[6] 
Y. Hu, Multiple integrals and expansion of solutions of differential equations driven by rough paths and by fractional Brownian motions,, Stochastics, 85 (2013), 859. doi: 10.1080/17442508.2012.673615. 
[7] 
Y. Hu, Y. Liu and D. Nualart, Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions,, Ann. Appl. Probab., 26 (2016), 1147. doi: 10.1214/15AAP1114. 
[8] 
Y. Hu and B. Øksendal, Fractional white noise calculus and applications to finance,, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6 (2003), 1. doi: 10.1142/S0219025703001110. 
[9] 
S. Janson, Gaussian Hilbert Spaces,, Cambridge University Press, (1997). doi: 10.1017/CBO9780511526169. 
[10] 
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,, Springer, (1992). doi: 10.1007/9783662126165. 
[11] 
T. Lyons, Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young,, Math. Res. Lett., 1 (1994), 451. doi: 10.4310/MRL.1994.v1.n4.a5. 
[12] 
T. Lyons, Differential equations driven by rough signals,, Rev. Mat. Iberoamericana, 14 (1998), 215. doi: 10.4171/RMI/240. 
[13] 
Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes,, SpringerVerlag, (2008). doi: 10.1007/9783540758730. 
[14] 
A. Neuenkirch and I. Nourdin, Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion,, J. Theoret. Probab., 20 (2007), 871. doi: 10.1007/s1095900700830. 
[15] 
D. Nualart and A. Rascanu, Differential equations driven by fractional Brownian motion,, Collect. Math., 53 (2002), 55. 
[16] 
C. Reutenauer, Free Lie Algebra,, vol. 7 of London Mathematical Society Monographs, (1993). 
[17] 
M. Zähle, Integration with respect to fractal functions and stochastic calculus. I.,, Probab. Theory Related Fields, 111 (1998), 333. doi: 10.1007/s004400050171. 
[1] 
Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with noninstantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2017, 22 (7) : 25212541. doi: 10.3934/dcdsb.2017084 
[2] 
María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2010, 14 (2) : 473493. doi: 10.3934/dcdsb.2010.14.473 
[3] 
Xinfu Chen, Bei Hu, Jin Liang, Yajing Zhang. Convergence rate of free boundary of numerical scheme for American option. Discrete & Continuous Dynamical Systems  B, 2016, 21 (5) : 14351444. doi: 10.3934/dcdsb.2016004 
[4] 
Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$brownian motion. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 14591502. doi: 10.3934/dcdsb.2018159 
[5] 
Wen Li, Song Wang, Volker Rehbock. A 2ndorder onepoint numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 273287. doi: 10.3934/naco.2017018 
[6] 
S. Kanagawa, K. Inoue, A. Arimoto, Y. Saisho. Mean square approximation of multi dimensional reflecting fractional Brownian motion via penalty method. Conference Publications, 2005, 2005 (Special) : 463475. doi: 10.3934/proc.2005.2005.463 
[7] 
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$rule. Inverse Problems & Imaging, 2012, 6 (1) : 133146. doi: 10.3934/ipi.2012.6.133 
[8] 
Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 116. doi: 10.3934/dcdsb.2017188 
[9] 
Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289307. doi: 10.3934/cpaa.2006.5.289 
[10] 
Yong Ren, Xuejuan Jia, Lanying Hu. Exponential stability of solutions to impulsive stochastic differential equations driven by $G$Brownian motion. Discrete & Continuous Dynamical Systems  B, 2015, 20 (7) : 21572169. doi: 10.3934/dcdsb.2015.20.2157 
[11] 
Shaokuan Chen, Shanjian Tang. Semilinear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401434. doi: 10.3934/mcrf.2015.5.401 
[12] 
Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems  B, 2015, 20 (1) : 2338. doi: 10.3934/dcdsb.2015.20.23 
[13] 
Weidong Zhao, Yang Li, Guannan Zhang. A generalized $\theta$scheme for solving backward stochastic differential equations. Discrete & Continuous Dynamical Systems  B, 2012, 17 (5) : 15851603. doi: 10.3934/dcdsb.2012.17.1585 
[14] 
Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2014, 19 (4) : 11971212. doi: 10.3934/dcdsb.2014.19.1197 
[15] 
Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slowfast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2015, 20 (7) : 22572267. doi: 10.3934/dcdsb.2015.20.2257 
[16] 
Guolian Wang, Boling Guo. Stochastic Kortewegde Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems  A, 2015, 35 (11) : 52555272. doi: 10.3934/dcds.2015.35.5255 
[17] 
Tyrone E. Duncan. Some linearquadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete & Continuous Dynamical Systems  A, 2015, 35 (11) : 54355445. doi: 10.3934/dcds.2015.35.5435 
[18] 
Yanzhao Cao, Anping Liu, Zhimin Zhang. Special section on differential equations: Theory, application, and numerical approximation. Discrete & Continuous Dynamical Systems  B, 2015, 20 (5) : iii. doi: 10.3934/dcdsb.2015.20.5i 
[19] 
Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$Brownian motion. Discrete & Continuous Dynamical Systems  B, 2015, 20 (1) : 281293. doi: 10.3934/dcdsb.2015.20.281 
[20] 
Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBMBurgers equations with nonconvex flux. Communications on Pure & Applied Analysis, 2014, 13 (2) : 835858. doi: 10.3934/cpaa.2014.13.835 
2016 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]