2016, 21(5): 1603-1615. doi: 10.3934/dcdsb.2016013

Interest rates risk-premium and shape of the yield curve

1. 

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025, United States

Received  April 2015 Revised  December 2015 Published  April 2016

We apply the general theory of pricing in incomplete markets, due to the author, on the problem of pricing bonds for the Hull-White stochastic interest rate model. As pricing in incomplete markets involves more market parameters than the classical theory, and as the derived risk premium is time-dependent, the proposed methodology might offer a better way for replicating different shapes of the empirically observed yield curves. For example, the so-called humped yield curve can be obtained from a normal yield curve by only increasing the investors risk aversion.
Citation: Srdjan Stojanovic. Interest rates risk-premium and shape of the yield curve. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1603-1615. doi: 10.3934/dcdsb.2016013
References:
[1]

D. Becherer, Utility-indifference hedging and valuation via reaction-diffusion systems,, Proc. R. Soc. Lond. A, 460 (2004), 27. doi: 10.1098/rspa.2003.1234.

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Political Econ., 81 (1973), 637. doi: 10.1086/260062.

[3]

D. Brigo and F. Mercurio, Interest Rate Models Theory and Practice,, Springer, (2001). doi: 10.1007/978-3-662-04553-4.

[4]

M. Davis, V. G. Panas and T. Zariphopoulou, European option pricing with transaction costs,, SIAM Journal on Control and Optimization, 31 (1993), 470. doi: 10.1137/0331022.

[5]

A. Friedman, Stochastic Differential Equations,, Vol 1 & 2, (1975).

[6]

S. D. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs,, Review of Futures Markets, 8 (1989), 222.

[7]

J. Hull and A. White, Pricing interest-rate derivative securities,, The Review of Financial Studies, 3 (1990), 573. doi: 10.1093/rfs/3.4.573.

[8]

L. Jiang, Mathematical Modeling and Methods of Option Pricing,, World Scientific Publishing, (2005). doi: 10.1142/5855.

[9]

J. Kallsen, Utility-based derivative pricing in incomplete markets,, Mathematical Finance-Bachelier Congress 2000, (2000), 313.

[10]

Z. Kang and S. Stojanovic, Interest rate risk premium and equity valuation,, Journal of Systems Science and Complexity, 23 (2010), 484. doi: 10.1007/s11424-010-0142-y.

[11]

G. Liang and L. Jiang, A modified structural model for credit risk,, IMA Journal of Management Mathematics, 23 (2012), 147. doi: 10.1093/imaman/dpr004.

[12]

R. C. Merton, Theory of rational option pricing,, Bell Journal of Economics and Management Science, 4 (1973), 141. doi: 10.2307/3003143.

[13]

R. C. Merton, Continuous-Time Finance,, Wiley-Blackwell, (1990).

[14]

M. Musiela and T. Zariphopoulou, An example of indifference prices under exponential preferences,, Finance and Stochastics, 8 (2004), 229. doi: 10.1007/s00780-003-0112-5.

[15]

R. Rouge and N. El Karoui, Pricing via utility maximization and entropy,, Mathematical Finance, 10 (2000), 259. doi: 10.1111/1467-9965.00093.

[16]

S. Stojanovic, Computational Financial Mathematics using MATHEMATICA®,, Birkhauser, (2003). doi: 10.1007/978-1-4612-0043-7.

[17]

S. Stojanovic, Risk premium and fair option prices under stochastic volatility: The HARA solution,, C. R. Acad. Sci. Paris Ser. I, 340 (2005), 551. doi: 10.1016/j.crma.2004.11.002.

[18]

S. Stojanovic, Stochastic Volatility & Risk Premium,, Lecture Notes, (2005).

[19]

S. Stojanovic, Pricing and hedging of multi type contracts under multidimensional risks in incomplete markets modeled by general Itô SDE systems,, Asia Pacific Financial Markets, 13 (2006), 345.

[20]

S. Stojanovic, Advanced Financial Engineering for Interest Rates, Equity, and FX,, Lecture Notes, (2007).

[21]

S. Stojanovic, Any-utility neutral and indifference pricing and hedging,, Risk and Decision Analysis, 4 (2013), 103.

[22]

S. Stojanovic, Neutral and Indifference Portfolio Pricing, Hedging and Investing,, Springer, (2011).

[23]

O. Vasicek, An equilibrium characterization of the term structure,, Journal of Financial Economics, 5 (1977), 177. doi: 10.1002/9781119186229.ch6.

show all references

References:
[1]

D. Becherer, Utility-indifference hedging and valuation via reaction-diffusion systems,, Proc. R. Soc. Lond. A, 460 (2004), 27. doi: 10.1098/rspa.2003.1234.

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Political Econ., 81 (1973), 637. doi: 10.1086/260062.

[3]

D. Brigo and F. Mercurio, Interest Rate Models Theory and Practice,, Springer, (2001). doi: 10.1007/978-3-662-04553-4.

[4]

M. Davis, V. G. Panas and T. Zariphopoulou, European option pricing with transaction costs,, SIAM Journal on Control and Optimization, 31 (1993), 470. doi: 10.1137/0331022.

[5]

A. Friedman, Stochastic Differential Equations,, Vol 1 & 2, (1975).

[6]

S. D. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs,, Review of Futures Markets, 8 (1989), 222.

[7]

J. Hull and A. White, Pricing interest-rate derivative securities,, The Review of Financial Studies, 3 (1990), 573. doi: 10.1093/rfs/3.4.573.

[8]

L. Jiang, Mathematical Modeling and Methods of Option Pricing,, World Scientific Publishing, (2005). doi: 10.1142/5855.

[9]

J. Kallsen, Utility-based derivative pricing in incomplete markets,, Mathematical Finance-Bachelier Congress 2000, (2000), 313.

[10]

Z. Kang and S. Stojanovic, Interest rate risk premium and equity valuation,, Journal of Systems Science and Complexity, 23 (2010), 484. doi: 10.1007/s11424-010-0142-y.

[11]

G. Liang and L. Jiang, A modified structural model for credit risk,, IMA Journal of Management Mathematics, 23 (2012), 147. doi: 10.1093/imaman/dpr004.

[12]

R. C. Merton, Theory of rational option pricing,, Bell Journal of Economics and Management Science, 4 (1973), 141. doi: 10.2307/3003143.

[13]

R. C. Merton, Continuous-Time Finance,, Wiley-Blackwell, (1990).

[14]

M. Musiela and T. Zariphopoulou, An example of indifference prices under exponential preferences,, Finance and Stochastics, 8 (2004), 229. doi: 10.1007/s00780-003-0112-5.

[15]

R. Rouge and N. El Karoui, Pricing via utility maximization and entropy,, Mathematical Finance, 10 (2000), 259. doi: 10.1111/1467-9965.00093.

[16]

S. Stojanovic, Computational Financial Mathematics using MATHEMATICA®,, Birkhauser, (2003). doi: 10.1007/978-1-4612-0043-7.

[17]

S. Stojanovic, Risk premium and fair option prices under stochastic volatility: The HARA solution,, C. R. Acad. Sci. Paris Ser. I, 340 (2005), 551. doi: 10.1016/j.crma.2004.11.002.

[18]

S. Stojanovic, Stochastic Volatility & Risk Premium,, Lecture Notes, (2005).

[19]

S. Stojanovic, Pricing and hedging of multi type contracts under multidimensional risks in incomplete markets modeled by general Itô SDE systems,, Asia Pacific Financial Markets, 13 (2006), 345.

[20]

S. Stojanovic, Advanced Financial Engineering for Interest Rates, Equity, and FX,, Lecture Notes, (2007).

[21]

S. Stojanovic, Any-utility neutral and indifference pricing and hedging,, Risk and Decision Analysis, 4 (2013), 103.

[22]

S. Stojanovic, Neutral and Indifference Portfolio Pricing, Hedging and Investing,, Springer, (2011).

[23]

O. Vasicek, An equilibrium characterization of the term structure,, Journal of Financial Economics, 5 (1977), 177. doi: 10.1002/9781119186229.ch6.

[1]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial & Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

[2]

Dingjun Yao, Kun Fan. Optimal risk control and dividend strategies in the presence of two reinsurers: Variance premium principle. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1-29. doi: 10.3934/jimo.2017090

[3]

Roya Soltani, Seyed Jafar Sadjadi, Mona Rahnama. Artificial intelligence combined with nonlinear optimization techniques and their application for yield curve optimization. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1701-1721. doi: 10.3934/jimo.2017014

[4]

Haixiang Yao, Zhongfei Li, Yongzeng Lai. Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate. Journal of Industrial & Management Optimization, 2016, 12 (1) : 187-209. doi: 10.3934/jimo.2016.12.187

[5]

Tien-Yu Lin, Ming-Te Chen, Kuo-Lung Hou. An inventory model for items with imperfect quality and quantity discounts under adjusted screening rate and earned interest. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1333-1347. doi: 10.3934/jimo.2016.12.1333

[6]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[7]

Bei Hu, Lishang Jiang, Jin Liang, Wei Wei. A fully non-linear PDE problem from pricing CDS with counterparty risk. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2001-2016. doi: 10.3934/dcdsb.2012.17.2001

[8]

Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-25. doi: 10.3934/jimo.2018013

[9]

Jianxiong Zhang, Zhenyu Bai, Wansheng Tang. Optimal pricing policy for deteriorating items with preservation technology investment. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1261-1277. doi: 10.3934/jimo.2014.10.1261

[10]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

[11]

Gang Xie, Wuyi Yue, Shouyang Wang. Optimal selection of cleaner products in a green supply chain with risk aversion. Journal of Industrial & Management Optimization, 2015, 11 (2) : 515-528. doi: 10.3934/jimo.2015.11.515

[12]

Linyi Qian, Lyu Chen, Zhuo Jin, Rongming Wang. Optimal liability ratio and dividend payment strategies under catastrophic risk. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2018015

[13]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[14]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[15]

Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331

[16]

Baojun Bian, Nan Wu, Harry Zheng. Optimal liquidation in a finite time regime switching model with permanent and temporary pricing impact. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1401-1420. doi: 10.3934/dcdsb.2016002

[17]

Ruopeng Wang, Jinting Wang, Chang Sun. Optimal pricing and inventory management for a loss averse firm when facing strategic customers. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-24. doi: 10.3934/jimo.2018019

[18]

Hui Huang, Eldad Haber, Lior Horesh. Optimal estimation of $\ell_1$-regularization prior from a regularized empirical Bayesian risk standpoint. Inverse Problems & Imaging, 2012, 6 (3) : 447-464. doi: 10.3934/ipi.2012.6.447

[19]

Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521

[20]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial & Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]