2015, 20(10): 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

Topological mixing, knot points and bounds of topological entropy

1. 

Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków

2. 

AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Krakow, Poland

Received  December 2014 Revised  March 2015 Published  September 2015

In the paper we provide exact lower bounds of topological entropy in the class of transitive and mixing maps preserving the Lebesgue measure which are nowhere monotone (with dense knot points).
Citation: Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547
References:
[1]

Ll. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One,, Second edition, (2000). doi: 10.1142/4205.

[2]

M. Barge and J. Martin, Dense periodicity on the interval,, Proc. Amer. Math. Soc., 94 (1985), 731. doi: 10.1090/S0002-9939-1985-0792293-8.

[3]

M. Barge and J. Martin, Dense orbits on the interval,, Michigan Math. J., 34 (1987), 3. doi: 10.1307/mmj/1029003477.

[4]

A. Barrio Blaya and V. Jiménez López, On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps,, Discrete Contin. Dyn. Syst., 32 (2012), 433. doi: 10.3934/dcds.2012.32.433.

[5]

L. S. Block and W. A. Coppel, Dynamics in One Dimension,, Lecture Notes in Mathematics, (1513).

[6]

L. Block and E. M. Coven, Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval,, Trans. Amer. Math. Soc., 300 (1987), 297. doi: 10.1090/S0002-9947-1987-0871677-X.

[7]

J. Bobok, Strictly ergodic patterns and entropy for interval maps,, Acta Math. Univ. Comenianae, 72 (2003), 111.

[8]

J. Bobok, The topological entropy versus level sets for interval maps. II, Studia Math., 166 (2005), 11. doi: 10.4064/sm166-1-2.

[9]

J. Bobok and M. Soukenka, Irreducibility, infinite level sets, and small entropy,, Real Analysis Exchange, 36 (): 449.

[10]

J. Bobok and Z. Nitecki, The topological entropy of $m$-fold maps,, Ergod. Th. Dynam. Sys., 25 (2005), 375. doi: 10.1017/S0143385704000574.

[11]

A. Bruckner, Differentiation of Real Functions,, Second edition, (1994).

[12]

G. Harańczyk and D. Kwietniak, When lower entropy implies stronger Devanay chaos,, Proceedings of the American Mathematical Society, 137 (2009), 2063. doi: 10.1090/S0002-9939-08-09756-6.

[13]

G. W. Henderson, The pseudo-arc as an inverse limit with one binding map,, Duke Math. J., 31 (1964), 421. doi: 10.1215/S0012-7094-64-03140-0.

[14]

P. Kościelniak and P. Oprocha, Shadowing, entropy and a homeomorphism of the pseudoarc,, Proc. Amer. Math. Soc., 138 (2010), 1047. doi: 10.1090/S0002-9939-09-10162-4.

[15]

P. Kůrka, Topological and Symbolic Dynamics,, Cours Spécialisés [Specialized Courses], (2003).

[16]

R. Mañé, Ergodic Theory and Differentiable Dynamics,, Springer, (1987). doi: 10.1007/978-3-642-70335-5.

[17]

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings,, Studia Math., 67 (1980), 45.

[18]

C. Mouron, Entropy of shift maps of the pseudo-arc,, Topology Appl., 159 (2012), 34. doi: 10.1016/j.topol.2011.07.014.

[19]

S. Ruette, Chaos for continuous interval maps, preprint,, 2003. Available from: , ().

[20]

P. Walters, An Introduction to Ergodic Theory,, Springer, (1982).

show all references

References:
[1]

Ll. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One,, Second edition, (2000). doi: 10.1142/4205.

[2]

M. Barge and J. Martin, Dense periodicity on the interval,, Proc. Amer. Math. Soc., 94 (1985), 731. doi: 10.1090/S0002-9939-1985-0792293-8.

[3]

M. Barge and J. Martin, Dense orbits on the interval,, Michigan Math. J., 34 (1987), 3. doi: 10.1307/mmj/1029003477.

[4]

A. Barrio Blaya and V. Jiménez López, On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps,, Discrete Contin. Dyn. Syst., 32 (2012), 433. doi: 10.3934/dcds.2012.32.433.

[5]

L. S. Block and W. A. Coppel, Dynamics in One Dimension,, Lecture Notes in Mathematics, (1513).

[6]

L. Block and E. M. Coven, Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval,, Trans. Amer. Math. Soc., 300 (1987), 297. doi: 10.1090/S0002-9947-1987-0871677-X.

[7]

J. Bobok, Strictly ergodic patterns and entropy for interval maps,, Acta Math. Univ. Comenianae, 72 (2003), 111.

[8]

J. Bobok, The topological entropy versus level sets for interval maps. II, Studia Math., 166 (2005), 11. doi: 10.4064/sm166-1-2.

[9]

J. Bobok and M. Soukenka, Irreducibility, infinite level sets, and small entropy,, Real Analysis Exchange, 36 (): 449.

[10]

J. Bobok and Z. Nitecki, The topological entropy of $m$-fold maps,, Ergod. Th. Dynam. Sys., 25 (2005), 375. doi: 10.1017/S0143385704000574.

[11]

A. Bruckner, Differentiation of Real Functions,, Second edition, (1994).

[12]

G. Harańczyk and D. Kwietniak, When lower entropy implies stronger Devanay chaos,, Proceedings of the American Mathematical Society, 137 (2009), 2063. doi: 10.1090/S0002-9939-08-09756-6.

[13]

G. W. Henderson, The pseudo-arc as an inverse limit with one binding map,, Duke Math. J., 31 (1964), 421. doi: 10.1215/S0012-7094-64-03140-0.

[14]

P. Kościelniak and P. Oprocha, Shadowing, entropy and a homeomorphism of the pseudoarc,, Proc. Amer. Math. Soc., 138 (2010), 1047. doi: 10.1090/S0002-9939-09-10162-4.

[15]

P. Kůrka, Topological and Symbolic Dynamics,, Cours Spécialisés [Specialized Courses], (2003).

[16]

R. Mañé, Ergodic Theory and Differentiable Dynamics,, Springer, (1987). doi: 10.1007/978-3-642-70335-5.

[17]

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings,, Studia Math., 67 (1980), 45.

[18]

C. Mouron, Entropy of shift maps of the pseudo-arc,, Topology Appl., 159 (2012), 34. doi: 10.1016/j.topol.2011.07.014.

[19]

S. Ruette, Chaos for continuous interval maps, preprint,, 2003. Available from: , ().

[20]

P. Walters, An Introduction to Ergodic Theory,, Springer, (1982).

[1]

David Burguet. Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 873-899. doi: 10.3934/dcds.2010.26.873

[2]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

[3]

Cristina Lizana, Vilton Pinheiro, Paulo Varandas. Contribution to the ergodic theory of robustly transitive maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 353-365. doi: 10.3934/dcds.2015.35.353

[4]

Vladimír Špitalský. Transitive dendrite map with infinite decomposition ideal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 771-792. doi: 10.3934/dcds.2015.35.771

[5]

John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

[6]

Mykola Matviichuk, Damoon Robatian. Chain transitive induced interval maps on continua. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 741-755. doi: 10.3934/dcds.2015.35.741

[7]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[8]

Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451

[9]

Hadda Hmili. Non topologically weakly mixing interval exchanges. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1079-1091. doi: 10.3934/dcds.2010.27.1079

[10]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[11]

Richard Miles, Thomas Ward. A directional uniformity of periodic point distribution and mixing. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1181-1189. doi: 10.3934/dcds.2011.30.1181

[12]

Yuanhong Chen, Chao Ma, Jun Wu. Moving recurrent properties for the doubling map on the unit interval. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2969-2979. doi: 10.3934/dcds.2016.36.2969

[13]

Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35

[14]

Jon Chaika, Howard Masur. There exists an interval exchange with a non-ergodic generic measure. Journal of Modern Dynamics, 2015, 9: 289-304. doi: 10.3934/jmd.2015.9.289

[15]

Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673

[16]

Denis Volk. Almost every interval translation map of three intervals is finite type. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2307-2314. doi: 10.3934/dcds.2014.34.2307

[17]

Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205

[18]

El Houcein El Abdalaoui, Joanna Kułaga-Przymus, Mariusz Lemańczyk, Thierry de la Rue. The Chowla and the Sarnak conjectures from ergodic theory point of view. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2899-2944. doi: 10.3934/dcds.2017125

[19]

Wen-Chiao Cheng. Two-point pre-image entropy. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 107-119. doi: 10.3934/dcds.2007.17.107

[20]

Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]