December  2015, 20(10): 3525-3545. doi: 10.3934/dcdsb.2015.20.3525

Directional uniformities, periodic points, and entropy

1. 

Uppsala Universitet, Lägerhyddsvägen 1, Hus 1, 5 och 7, 75106 Uppsala, Sweden

2. 

Durham University, Durham DH1 3LE, United Kingdom

Received  November 2014 Revised  March 2015 Published  September 2015

Dynamical systems generated by $d\ge2$ commuting homeomorphisms (topological $\mathbb{Z}^d$-actions) contain within them structures on many scales, and in particular contain many actions of $\mathbb{Z}^k$ for $1\le k\le d$. Familiar dynamical invariants for homeomorphisms, like entropy and periodic point data, become more complex and permit multiple definitions. We briefly survey some of these and other related invariants in the setting of algebraic $\mathbb{Z}^d$-actions, showing how, even in settings where the natural entropy as a $\mathbb{Z}^d$-action vanishes, a powerful theory of directional entropy and periodic points can be built. An underlying theme is uniformity in dynamical invariants as the direction changes, and the connection between this theory and problems in number theory; we explore this for several invariants. We also highlight Fried's notion of average entropy and its connection to uniformities in growth properties, and prove a new relationship between this entropy and periodic point growth in this setting.
Citation: Richard Miles, Thomas Ward. Directional uniformities, periodic points, and entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3525-3545. doi: 10.3934/dcdsb.2015.20.3525
References:
[1]

L. M. Abramov, The entropy of an automorphism of a solenoidal group,, Teor. Veroyatnost. i Primenen, 4 (1959), 249. Google Scholar

[2]

N. Ailon and Z. Rudnick, Torsion points on curves and common divisors of $a^k-1$ and $b^k-1$,, Acta Arith., 113 (2004), 31. doi: 10.4064/aa113-1-3. Google Scholar

[3]

A. Baker, Transcendental Number Theory,, 2nd edition, (1990). doi: 10.1017/CBO9780511565977. Google Scholar

[4]

P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle,, Acta Arith., 18 (1971), 355. Google Scholar

[5]

M. Boyle and D. Lind, Expansive subdynamics,, Trans. Amer. Math. Soc., 349 (1997), 55. doi: 10.1090/S0002-9947-97-01634-6. Google Scholar

[6]

V. Chothi, G. Everest and T. Ward, $S$-integer dynamical systems: Periodic points,, J. Reine Angew. Math., 489 (1997), 99. doi: 10.1515/crll.1997.489.99. Google Scholar

[7]

P. M. Cohn, Algebraic Numbers and Algebraic Functions,, Chapman and Hall Mathematics Series, (1991). doi: 10.1007/978-1-4899-3444-4. Google Scholar

[8]

P. Corvaja and U. Zannier, A lower bound for the height of a rational function at $S$-unit points,, Monatsh. Math., 144 (2005), 203. doi: 10.1007/s00605-004-0273-0. Google Scholar

[9]

E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial,, Acta Arith., 34 (1979), 391. Google Scholar

[10]

M. Einsiedler and D. Lind, Algebraic $\mathbbZ^d$-actions of entropy rank one,, Trans. Amer. Math. Soc., 356 (2004), 1799. doi: 10.1090/S0002-9947-04-03554-8. Google Scholar

[11]

M. Einsiedler, D. Lind, R. Miles and T. Ward, Expansive subdynamics for algebraic $\mathbbZ^d$-actions,, Ergodic Theory Dynam. Systems, 21 (2001), 1695. doi: 10.1017/S014338570100181X. Google Scholar

[12]

G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics,, Universitext, (1999). doi: 10.1007/978-1-4471-3898-3. Google Scholar

[13]

D. Fried, Entropy for smooth abelian actions,, Proc. Amer. Math. Soc., 87 (1983), 111. doi: 10.1090/S0002-9939-1983-0677244-7. Google Scholar

[14]

S. Friedland, Entropy of graphs, semigroups and groups},, in Ergodic Theory of $Z^d$ Actions (Warwick, (1996), 1993. doi: 10.1017/CBO9780511662812.013. Google Scholar

[15]

W. Geller and M. Pollicott, An entropy for $\mathbb Z^2$-actions with finite entropy generators,, Dedicated to the memory of Wiesław Szlenk, 157 (1998), 209. Google Scholar

[16]

A. Gorodnik and R. Spatzier, Mixing properties of commuting nilmanifold automorphisms,, , (). Google Scholar

[17]

A. Katok, S. Katok and F. R. Hertz, The Fried average entropy and slow entropy for actions of higher rank abelian groups,, Geometric and Functional Analysis, 24 (2014), 1204. doi: 10.1007/s00039-014-0284-5. Google Scholar

[18]

B. Kitchens and K. Schmidt, Automorphisms of compact groups,, Ergodic Theory Dynam. Systems, 9 (1989), 691. doi: 10.1017/S0143385700005290. Google Scholar

[19]

F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978). Google Scholar

[20]

D. Lind, K. Schmidt and T. Ward, Mahler measure and entropy for commuting automorphisms of compact groups,, Invent. Math., 101 (1990), 593. doi: 10.1007/BF01231517. Google Scholar

[21]

D. A. Lind and T. Ward, Automorphisms of solenoids and $p$-adic entropy,, Ergodic Theory Dynam. Systems, 8 (1988), 411. doi: 10.1017/S0143385700004545. Google Scholar

[22]

R. Miles, A natural boundary for the dynamical zeta function for commuting group automorphisms,, Proc. Amer. Math. Soc., 143 (2015), 2927. doi: 10.1090/S0002-9939-2015-12515-4. Google Scholar

[23]

R. Miles, Zeta functions for elements of entropy rank-one actions,, Ergodic Theory Dynam. Systems, 27 (2007), 567. doi: 10.1017/S0143385706000794. Google Scholar

[24]

R. Miles, Finitely represented closed-orbit subdynamics for commuting automorphisms,, Ergodic Theory Dynam. Systems, 30 (2010), 1787. doi: 10.1017/S0143385709000741. Google Scholar

[25]

R. Miles, Synchronization points and associated dynamical invariants,, Trans. Amer. Math. Soc., 365 (2013), 5503. doi: 10.1090/S0002-9947-2013-05829-1. Google Scholar

[26]

R. Miles, M. Staines and T. Ward, Dynamical invariants for group automorphisms,, Contemp. Math., 631 (2015), 231. doi: 10.1090/conm/631/12606. Google Scholar

[27]

R. Miles and T. Ward, Periodic point data detects subdynamics in entropy rank one,, Ergodic Theory Dynam. Systems, 26 (2006), 1913. doi: 10.1017/S014338570600054X. Google Scholar

[28]

R. Miles and T. Ward, Uniform periodic point growth in entropy rank one,, Proc. Amer. Math. Soc., 136 (2008), 359. doi: 10.1090/S0002-9939-07-09018-1. Google Scholar

[29]

R. Miles and T. Ward, Orbit-counting for nilpotent group shifts,, Proc. Amer. Math. Soc., 137 (2009), 1499. doi: 10.1090/S0002-9939-08-09649-4. Google Scholar

[30]

R. Miles and T. Ward, A dichotomy in orbit growth for commuting automorphisms,, J. Lond. Math. Soc. (2), 81 (2010), 715. doi: 10.1112/jlms/jdq010. Google Scholar

[31]

R. Miles and T. Ward, A directional uniformity of periodic point distribution and mixing,, Discrete Contin. Dyn. Syst., 30 (2011), 1181. doi: 10.3934/dcds.2011.30.1181. Google Scholar

[32]

J. Milnor, On the entropy geometry of cellular automata,, Complex Systems, 2 (1988), 357. Google Scholar

[33]

G. Morris and T. Ward, Entropy bounds for endomorphisms commuting with $K$ actions,, Israel J. Math., 106 (1998), 1. doi: 10.1007/BF02773458. Google Scholar

[34]

M. Pollicott, A note on the growth of periodic points for commuting toral automorphisms,, ISRN Geometry, 2012 (2012). doi: 10.5402/2012/165808. Google Scholar

[35]

K. Schmidt, Dynamical Systems of Algebraic Origin,, Progress in Mathematics, (1995). doi: 10.1007/978-3-0348-0277-2. Google Scholar

[36]

K. Schmidt and T. Ward, Mixing automorphisms of compact groups and a theorem of Schlickewei,, Invent. Math., 111 (1993), 69. doi: 10.1007/BF01231280. Google Scholar

[37]

K. R. Yu, Linear forms in $p$-adic logarithms. II,, Compositio Math., 74 (1990), 15. Google Scholar

show all references

References:
[1]

L. M. Abramov, The entropy of an automorphism of a solenoidal group,, Teor. Veroyatnost. i Primenen, 4 (1959), 249. Google Scholar

[2]

N. Ailon and Z. Rudnick, Torsion points on curves and common divisors of $a^k-1$ and $b^k-1$,, Acta Arith., 113 (2004), 31. doi: 10.4064/aa113-1-3. Google Scholar

[3]

A. Baker, Transcendental Number Theory,, 2nd edition, (1990). doi: 10.1017/CBO9780511565977. Google Scholar

[4]

P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle,, Acta Arith., 18 (1971), 355. Google Scholar

[5]

M. Boyle and D. Lind, Expansive subdynamics,, Trans. Amer. Math. Soc., 349 (1997), 55. doi: 10.1090/S0002-9947-97-01634-6. Google Scholar

[6]

V. Chothi, G. Everest and T. Ward, $S$-integer dynamical systems: Periodic points,, J. Reine Angew. Math., 489 (1997), 99. doi: 10.1515/crll.1997.489.99. Google Scholar

[7]

P. M. Cohn, Algebraic Numbers and Algebraic Functions,, Chapman and Hall Mathematics Series, (1991). doi: 10.1007/978-1-4899-3444-4. Google Scholar

[8]

P. Corvaja and U. Zannier, A lower bound for the height of a rational function at $S$-unit points,, Monatsh. Math., 144 (2005), 203. doi: 10.1007/s00605-004-0273-0. Google Scholar

[9]

E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial,, Acta Arith., 34 (1979), 391. Google Scholar

[10]

M. Einsiedler and D. Lind, Algebraic $\mathbbZ^d$-actions of entropy rank one,, Trans. Amer. Math. Soc., 356 (2004), 1799. doi: 10.1090/S0002-9947-04-03554-8. Google Scholar

[11]

M. Einsiedler, D. Lind, R. Miles and T. Ward, Expansive subdynamics for algebraic $\mathbbZ^d$-actions,, Ergodic Theory Dynam. Systems, 21 (2001), 1695. doi: 10.1017/S014338570100181X. Google Scholar

[12]

G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics,, Universitext, (1999). doi: 10.1007/978-1-4471-3898-3. Google Scholar

[13]

D. Fried, Entropy for smooth abelian actions,, Proc. Amer. Math. Soc., 87 (1983), 111. doi: 10.1090/S0002-9939-1983-0677244-7. Google Scholar

[14]

S. Friedland, Entropy of graphs, semigroups and groups},, in Ergodic Theory of $Z^d$ Actions (Warwick, (1996), 1993. doi: 10.1017/CBO9780511662812.013. Google Scholar

[15]

W. Geller and M. Pollicott, An entropy for $\mathbb Z^2$-actions with finite entropy generators,, Dedicated to the memory of Wiesław Szlenk, 157 (1998), 209. Google Scholar

[16]

A. Gorodnik and R. Spatzier, Mixing properties of commuting nilmanifold automorphisms,, , (). Google Scholar

[17]

A. Katok, S. Katok and F. R. Hertz, The Fried average entropy and slow entropy for actions of higher rank abelian groups,, Geometric and Functional Analysis, 24 (2014), 1204. doi: 10.1007/s00039-014-0284-5. Google Scholar

[18]

B. Kitchens and K. Schmidt, Automorphisms of compact groups,, Ergodic Theory Dynam. Systems, 9 (1989), 691. doi: 10.1017/S0143385700005290. Google Scholar

[19]

F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978). Google Scholar

[20]

D. Lind, K. Schmidt and T. Ward, Mahler measure and entropy for commuting automorphisms of compact groups,, Invent. Math., 101 (1990), 593. doi: 10.1007/BF01231517. Google Scholar

[21]

D. A. Lind and T. Ward, Automorphisms of solenoids and $p$-adic entropy,, Ergodic Theory Dynam. Systems, 8 (1988), 411. doi: 10.1017/S0143385700004545. Google Scholar

[22]

R. Miles, A natural boundary for the dynamical zeta function for commuting group automorphisms,, Proc. Amer. Math. Soc., 143 (2015), 2927. doi: 10.1090/S0002-9939-2015-12515-4. Google Scholar

[23]

R. Miles, Zeta functions for elements of entropy rank-one actions,, Ergodic Theory Dynam. Systems, 27 (2007), 567. doi: 10.1017/S0143385706000794. Google Scholar

[24]

R. Miles, Finitely represented closed-orbit subdynamics for commuting automorphisms,, Ergodic Theory Dynam. Systems, 30 (2010), 1787. doi: 10.1017/S0143385709000741. Google Scholar

[25]

R. Miles, Synchronization points and associated dynamical invariants,, Trans. Amer. Math. Soc., 365 (2013), 5503. doi: 10.1090/S0002-9947-2013-05829-1. Google Scholar

[26]

R. Miles, M. Staines and T. Ward, Dynamical invariants for group automorphisms,, Contemp. Math., 631 (2015), 231. doi: 10.1090/conm/631/12606. Google Scholar

[27]

R. Miles and T. Ward, Periodic point data detects subdynamics in entropy rank one,, Ergodic Theory Dynam. Systems, 26 (2006), 1913. doi: 10.1017/S014338570600054X. Google Scholar

[28]

R. Miles and T. Ward, Uniform periodic point growth in entropy rank one,, Proc. Amer. Math. Soc., 136 (2008), 359. doi: 10.1090/S0002-9939-07-09018-1. Google Scholar

[29]

R. Miles and T. Ward, Orbit-counting for nilpotent group shifts,, Proc. Amer. Math. Soc., 137 (2009), 1499. doi: 10.1090/S0002-9939-08-09649-4. Google Scholar

[30]

R. Miles and T. Ward, A dichotomy in orbit growth for commuting automorphisms,, J. Lond. Math. Soc. (2), 81 (2010), 715. doi: 10.1112/jlms/jdq010. Google Scholar

[31]

R. Miles and T. Ward, A directional uniformity of periodic point distribution and mixing,, Discrete Contin. Dyn. Syst., 30 (2011), 1181. doi: 10.3934/dcds.2011.30.1181. Google Scholar

[32]

J. Milnor, On the entropy geometry of cellular automata,, Complex Systems, 2 (1988), 357. Google Scholar

[33]

G. Morris and T. Ward, Entropy bounds for endomorphisms commuting with $K$ actions,, Israel J. Math., 106 (1998), 1. doi: 10.1007/BF02773458. Google Scholar

[34]

M. Pollicott, A note on the growth of periodic points for commuting toral automorphisms,, ISRN Geometry, 2012 (2012). doi: 10.5402/2012/165808. Google Scholar

[35]

K. Schmidt, Dynamical Systems of Algebraic Origin,, Progress in Mathematics, (1995). doi: 10.1007/978-3-0348-0277-2. Google Scholar

[36]

K. Schmidt and T. Ward, Mixing automorphisms of compact groups and a theorem of Schlickewei,, Invent. Math., 111 (1993), 69. doi: 10.1007/BF01231280. Google Scholar

[37]

K. R. Yu, Linear forms in $p$-adic logarithms. II,, Compositio Math., 74 (1990), 15. Google Scholar

[1]

Valentin Afraimovich, Maurice Courbage, Lev Glebsky. Directional complexity and entropy for lift mappings. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3385-3401. doi: 10.3934/dcdsb.2015.20.3385

[2]

Marcelo E. de Oliveira, Luiz M. G. Neto. Directional entropy based model for diffusivity-driven tumor growth. Mathematical Biosciences & Engineering, 2016, 13 (2) : 333-341. doi: 10.3934/mbe.2015005

[3]

Richard Miles, Thomas Ward. A directional uniformity of periodic point distribution and mixing. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1181-1189. doi: 10.3934/dcds.2011.30.1181

[4]

Rong Dong, Dongsheng Li, Lihe Wang. Regularity of elliptic systems in divergence form with directional homogenization. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 75-90. doi: 10.3934/dcds.2018004

[5]

Rafael Monteiro. Horizontal patterns from finite speed directional quenching. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3503-3534. doi: 10.3934/dcdsb.2018285

[6]

Rasmus Dalgas Kongskov, Yiqiu Dong. Tomographic reconstruction methods for decomposing directional components. Inverse Problems & Imaging, 2018, 12 (6) : 1429-1442. doi: 10.3934/ipi.2018060

[7]

Alfonso Artigue. Discrete and continuous topological dynamics: Fields of cross sections and expansive flows. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5911-5927. doi: 10.3934/dcds.2016059

[8]

M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks & Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201

[9]

Rongsong Liu, Jiangping Shuai, Jianhong Wu, Huaiping Zhu. Modeling spatial spread of west nile virus and impact of directional dispersal of birds. Mathematical Biosciences & Engineering, 2006, 3 (1) : 145-160. doi: 10.3934/mbe.2006.3.145

[10]

Michael A. Saum, Tim Schulze. The role of processing speed in determining step patterns during directional epitaxy. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 443-457. doi: 10.3934/dcdsb.2009.11.443

[11]

Linlin Su, Thomas Nagylaki. Clines with directional selection and partial panmixia in an unbounded unidimensional habitat. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1697-1741. doi: 10.3934/dcds.2015.35.1697

[12]

Paola Goatin, Matthias Mimault. A mixed system modeling two-directional pedestrian flows. Mathematical Biosciences & Engineering, 2015, 12 (2) : 375-392. doi: 10.3934/mbe.2015.12.375

[13]

Anatole Katok. Fifty years of entropy in dynamics: 1958--2007. Journal of Modern Dynamics, 2007, 1 (4) : 545-596. doi: 10.3934/jmd.2007.1.545

[14]

Fryderyk Falniowski, Marcin Kulczycki, Dominik Kwietniak, Jian Li. Two results on entropy, chaos and independence in symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3487-3505. doi: 10.3934/dcdsb.2015.20.3487

[15]

Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423

[16]

Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control & Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365

[17]

Shunfu Jin, Wuyi Yue, Xuena Yan. Performance evaluation of a power saving mechanism in IEEE 802.16 wireless MANs with bi-directional traffic. Journal of Industrial & Management Optimization, 2011, 7 (3) : 717-733. doi: 10.3934/jimo.2011.7.717

[18]

Emile Franc Doungmo Goufo. Multi-directional and saturated chaotic attractors with many scrolls for fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 629-643. doi: 10.3934/dcdss.2020034

[19]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

[20]

Roderick V.N. Melnik, Ningning Song, Per Sandholdt. Dynamics of torque-speed profiles for electric vehicles and nonlinear models based on differential-algebraic equations. Conference Publications, 2003, 2003 (Special) : 610-617. doi: 10.3934/proc.2003.2003.610

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]