December  2015, 20(10): 3475-3485. doi: 10.3934/dcdsb.2015.20.3475

A note on specification for iterated function systems

1. 

Department of Mathematics, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, CT, 21945-970, Brazil

2. 

Mathematics Department, The Pennsylvania State University, State College, PA 16802, United States

3. 

Department of Mathematics, Graduate School of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810

Received  December 2014 Revised  March 2015 Published  September 2015

We introduce several notions of specification for iterated function systems and exhibit some of their dynamical properties. In particular, we show that topological entropy and algebraic pressure [4] of systems with specification are approximable by the corresponding expressions for finitely generated iterated function systems.
Citation: Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475
References:
[1]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401. doi: 10.1090/S0002-9947-1971-0274707-X. Google Scholar

[2]

M. Denker, Y. Kifer and M. Stadlbauer, Thermodynamic formalism for random countable Markov shifts,, Discrete Contin. Dyn. Syst., 22 (2008), 131. doi: 10.3934/dcds.2008.22.131. Google Scholar

[3]

M. Denker, Einführung in die Analysis Dynamischer Systeme,, Springer-Lehrbuch, (2005). Google Scholar

[4]

M. Denker and M. Yuri, Conformal families of measures for general iterated function systems,, Contemporary Math., 631 (2015), 93. doi: 10.1090/conm/631/12598. Google Scholar

[5]

B. M. Gurevic, Topological entropy for denumerable Markov chains,, Dokl. Akad. Nauk., SSSR 187 (1969), 715. Google Scholar

[6]

O. Sarig, Thermodynamic formalism for countable Markov shifts,, Ergodic Theory & Dynamical Systems, 19 (1999), 1565. doi: 10.1017/S0143385799146820. Google Scholar

[7]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982). Google Scholar

show all references

References:
[1]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401. doi: 10.1090/S0002-9947-1971-0274707-X. Google Scholar

[2]

M. Denker, Y. Kifer and M. Stadlbauer, Thermodynamic formalism for random countable Markov shifts,, Discrete Contin. Dyn. Syst., 22 (2008), 131. doi: 10.3934/dcds.2008.22.131. Google Scholar

[3]

M. Denker, Einführung in die Analysis Dynamischer Systeme,, Springer-Lehrbuch, (2005). Google Scholar

[4]

M. Denker and M. Yuri, Conformal families of measures for general iterated function systems,, Contemporary Math., 631 (2015), 93. doi: 10.1090/conm/631/12598. Google Scholar

[5]

B. M. Gurevic, Topological entropy for denumerable Markov chains,, Dokl. Akad. Nauk., SSSR 187 (1969), 715. Google Scholar

[6]

O. Sarig, Thermodynamic formalism for countable Markov shifts,, Ergodic Theory & Dynamical Systems, 19 (1999), 1565. doi: 10.1017/S0143385799146820. Google Scholar

[7]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982). Google Scholar

[1]

Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469

[2]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[3]

De-Jun Feng, Antti Käenmäki. Equilibrium states of the pressure function for products of matrices. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 699-708. doi: 10.3934/dcds.2011.30.699

[4]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[5]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[6]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[7]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[8]

Pablo G. Barrientos, Abbas Fakhari, Aliasghar Sarizadeh. Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3341-3352. doi: 10.3934/dcds.2014.34.3341

[9]

David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499

[10]

Wouter Huberts, E. Marielle H. Bosboom, Frans N. van de Vosse. A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function. Mathematical Biosciences & Engineering, 2009, 6 (1) : 27-40. doi: 10.3934/mbe.2009.6.27

[11]

Kyungwoo Song, Yuxi Zheng. Semi-hyperbolic patches of solutions of the pressure gradient system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1365-1380. doi: 10.3934/dcds.2009.24.1365

[12]

Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795

[13]

Rodolfo Mendoza-Gómez, Roger Z. Ríos-Mercado, Karla B. Valenzuela-Ocaña. An iterated greedy algorithm with variable neighborhood descent for the planning of specialized diagnostic services in a segmented healthcare system. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-29. doi: 10.3934/jimo.2018182

[14]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[15]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[16]

Karsten Keller, Sergiy Maksymenko, Inga Stolz. Entropy determination based on the ordinal structure of a dynamical system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3507-3524. doi: 10.3934/dcdsb.2015.20.3507

[17]

Peng Zhang, Jiequan Li, Tong Zhang. On two-dimensional Riemann problem for pressure-gradient equations of the Euler system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 609-634. doi: 10.3934/dcds.1998.4.609

[18]

Welington Cordeiro, Manfred Denker, Xuan Zhang. On specification and measure expansiveness. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1941-1957. doi: 10.3934/dcds.2017082

[19]

Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991

[20]

Welington Cordeiro, Manfred Denker, Xuan Zhang. Corrigendum to: On specification and measure expansiveness. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3705-3706. doi: 10.3934/dcds.2018160

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

[Back to Top]