December  2015, 20(10): 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

Topological entropy for set-valued maps

1. 

Departamento de Matemática, Universidad del Bío, Bío Av. Collao # 1202, Casilla 5-C, VIII-Región, Concepción, Chile

2. 

Instituto de Matemática y Ciencias Afines (IMCA), Universidad Nacional de Ingeniería, Calle Los Biólogos 245, Urb. San César La Molina, Lima 12, Lima, Peru

3. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, P. O. Box 68530, 21945-970 Rio de Janeiro, Brazil

Received  April 2015 Revised  May 2015 Published  September 2015

In this paper we define and study the topological entropy of a set-valued dynamical system. Actually, we obtain two entropies based on separated and spanning sets. Some properties of these entropies resembling the single-valued case will be obtained.
Citation: Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461
References:
[1]

R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy,, Trans. Amer. Math. Soc., 114 (1965), 309. doi: 10.1090/S0002-9947-1965-0175106-9. Google Scholar

[2]

E. Akin, The General Topology of Dynamical Systems,, Graduate Studies in Mathematics, (1993). Google Scholar

[3]

J.-P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory,, Grundlehren der Mathematischen Wissenschaften, (1984). doi: 10.1007/978-3-642-69512-4. Google Scholar

[4]

J.-P. Aubin and H. Frankowska, Set-valued Analysis,, Birkhäuser Boston, (1990). Google Scholar

[5]

J.-P. Aubin, H. Frankowska and A. Lasota, Poincaré's recurrence theorem for set-valued dynamical systems,, Ann. Polon. Math., 54 (1991), 85. Google Scholar

[6]

L. M. Blumenthal, A new concept in distance geometry with applications to spherical subsets,, Bull. Amer. Math. Soc., 47 (1941), 435. doi: 10.1090/S0002-9904-1941-07471-9. Google Scholar

[7]

L. Boltzmann, Über die beziehung dem zweiten Haubtsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht,, Wiener Berichte, 76 (1877), 373. Google Scholar

[8]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401. doi: 10.1090/S0002-9947-1971-0274707-X. Google Scholar

[9]

M. Brin and G. Stuck, Introduction to Dynamical Systems,, Cambridge University Press, (2002). doi: 10.1017/CBO9780511755316. Google Scholar

[10]

R. S. Burachik and A. N. Iusem, Set-valued Mappings and Enlargements of Monotone Operators,, Springer Optimization and Its Applications, (2008). Google Scholar

[11]

L. J. Cherene, Jr., Set Valued Dynamical Systems and Economic Flow,, Lecture Notes in Economics and Mathematical Systems, (1978). Google Scholar

[12]

M. Ciklová, Dynamical systems generated by functions with connected $G_\delta$ graphs,, Real Anal. Exchange, 30 (): 617. Google Scholar

[13]

R. Clausius, Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie,, Annalen der Physik, 125 (): 353. Google Scholar

[14]

R. Clausius, The Mechanical Theory of Heat - with its Applications to the Steam Engine and to Physical Properties of Bodies,, John van Voorst, (1867). Google Scholar

[15]

E. I. Dinaburg, A correlation between topological entropy and metric entropy (Russian),, Dokl. Akad. Nauk SSSR, 190 (1970), 19. Google Scholar

[16]

T. Downarowicz, Entropy in Dynamical Systems,, New Mathematical Monographs, (2011). doi: 10.1017/CBO9780511976155. Google Scholar

[17]

B. E. Gillam, A new set of postulates for euclidean geometry,, Revista Ci. Lima, 42 (1940), 869. Google Scholar

[18]

A. Katok, Fifty years of entropy in dynamics: 1958-2007,, J. Mod. Dyn., 1 (2007), 545. doi: 10.3934/jmd.2007.1.545. Google Scholar

[19]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137. Google Scholar

[20]

A. Y. Khinchin, On the basic theorems of information theory,, Uspehi Mat. Nauk (N.S.), 11 (1956), 17. Google Scholar

[21]

A. N. Kolmogorov, A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces, (Russian), Topology, 169 (1985), 94. Google Scholar

[22]

M. Maschler and B. Peleg, Stable sets and stable points of set-valued dynamic systems with applications to game theory,, SIAM J. Control Optimization, 14 (1976), 985. doi: 10.1137/0314062. Google Scholar

[23]

B. McMillan, The basic theorems of information theory,, Ann. Math. Statistics, 24 (1953), 196. doi: 10.1214/aoms/1177729028. Google Scholar

[24]

W. M. Miller, Frobenius-Perron operators and approximation of invariant measures for set-valued dynamical systems,, Set-Valued Anal., 3 (1995), 181. doi: 10.1007/BF01038599. Google Scholar

[25]

W. Miller and E. Akin, Invariant measures for set-valued dynamical systems,, Trans. Amer. Math. Soc., 351 (1999), 1203. doi: 10.1090/S0002-9947-99-02424-1. Google Scholar

[26]

S. Y. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems. Contractive case,, Topol. Methods Nonlinear Anal., 32 (2008), 139. Google Scholar

[27]

S. Y. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems, Hyperbolic case,, Topol. Methods Nonlinear Anal., 32 (2008), 151. Google Scholar

[28]

R. T. Rockafellar, Convex Analysis,, Reprint of the 1970 original, (1970). Google Scholar

[29]

Ja. Sinai, On the concept of entropy for a dynamic system, (Russian), Dokl. Akad. Nauk SSSR, 124 (1959), 768. Google Scholar

[30]

Y. Sinai, Kolmogorov-Sinai entropy,, Scholarpedia, 4 (2009). Google Scholar

[31]

C. E. Shannon, A mathematical theory of communication,, Bell System Tech. J., 27 (1948), 379. doi: 10.1002/j.1538-7305.1948.tb01338.x. Google Scholar

[32]

E. Tarafdar, P. Watson and X.-Z. Yuan, Poincare's recurrence theorems for set-valued dynamical systems,, Appl. Math. Lett., 10 (1997), 37. doi: 10.1016/S0893-9659(97)00102-X. Google Scholar

[33]

E. Tarafdar and X.-Z. Yuan, The set-valued dynamic system and its applications to Pareto optima,, Acta Appl. Math., 46 (1997), 93. doi: 10.1023/A:1005722506504. Google Scholar

[34]

J. von Neumann, Mathematische Grundlagen der Quantenmechanik,, Unveränderter Nachdruck der ersten Auflage von 1932, (1932). Google Scholar

[35]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982). Google Scholar

[36]

A. J. Zaslavski, Convergence of trajectories of discrete dispersive dynamical systems,, Commun. Math. Anal., 4 (2008), 10. Google Scholar

show all references

References:
[1]

R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy,, Trans. Amer. Math. Soc., 114 (1965), 309. doi: 10.1090/S0002-9947-1965-0175106-9. Google Scholar

[2]

E. Akin, The General Topology of Dynamical Systems,, Graduate Studies in Mathematics, (1993). Google Scholar

[3]

J.-P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory,, Grundlehren der Mathematischen Wissenschaften, (1984). doi: 10.1007/978-3-642-69512-4. Google Scholar

[4]

J.-P. Aubin and H. Frankowska, Set-valued Analysis,, Birkhäuser Boston, (1990). Google Scholar

[5]

J.-P. Aubin, H. Frankowska and A. Lasota, Poincaré's recurrence theorem for set-valued dynamical systems,, Ann. Polon. Math., 54 (1991), 85. Google Scholar

[6]

L. M. Blumenthal, A new concept in distance geometry with applications to spherical subsets,, Bull. Amer. Math. Soc., 47 (1941), 435. doi: 10.1090/S0002-9904-1941-07471-9. Google Scholar

[7]

L. Boltzmann, Über die beziehung dem zweiten Haubtsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht,, Wiener Berichte, 76 (1877), 373. Google Scholar

[8]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401. doi: 10.1090/S0002-9947-1971-0274707-X. Google Scholar

[9]

M. Brin and G. Stuck, Introduction to Dynamical Systems,, Cambridge University Press, (2002). doi: 10.1017/CBO9780511755316. Google Scholar

[10]

R. S. Burachik and A. N. Iusem, Set-valued Mappings and Enlargements of Monotone Operators,, Springer Optimization and Its Applications, (2008). Google Scholar

[11]

L. J. Cherene, Jr., Set Valued Dynamical Systems and Economic Flow,, Lecture Notes in Economics and Mathematical Systems, (1978). Google Scholar

[12]

M. Ciklová, Dynamical systems generated by functions with connected $G_\delta$ graphs,, Real Anal. Exchange, 30 (): 617. Google Scholar

[13]

R. Clausius, Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie,, Annalen der Physik, 125 (): 353. Google Scholar

[14]

R. Clausius, The Mechanical Theory of Heat - with its Applications to the Steam Engine and to Physical Properties of Bodies,, John van Voorst, (1867). Google Scholar

[15]

E. I. Dinaburg, A correlation between topological entropy and metric entropy (Russian),, Dokl. Akad. Nauk SSSR, 190 (1970), 19. Google Scholar

[16]

T. Downarowicz, Entropy in Dynamical Systems,, New Mathematical Monographs, (2011). doi: 10.1017/CBO9780511976155. Google Scholar

[17]

B. E. Gillam, A new set of postulates for euclidean geometry,, Revista Ci. Lima, 42 (1940), 869. Google Scholar

[18]

A. Katok, Fifty years of entropy in dynamics: 1958-2007,, J. Mod. Dyn., 1 (2007), 545. doi: 10.3934/jmd.2007.1.545. Google Scholar

[19]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137. Google Scholar

[20]

A. Y. Khinchin, On the basic theorems of information theory,, Uspehi Mat. Nauk (N.S.), 11 (1956), 17. Google Scholar

[21]

A. N. Kolmogorov, A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces, (Russian), Topology, 169 (1985), 94. Google Scholar

[22]

M. Maschler and B. Peleg, Stable sets and stable points of set-valued dynamic systems with applications to game theory,, SIAM J. Control Optimization, 14 (1976), 985. doi: 10.1137/0314062. Google Scholar

[23]

B. McMillan, The basic theorems of information theory,, Ann. Math. Statistics, 24 (1953), 196. doi: 10.1214/aoms/1177729028. Google Scholar

[24]

W. M. Miller, Frobenius-Perron operators and approximation of invariant measures for set-valued dynamical systems,, Set-Valued Anal., 3 (1995), 181. doi: 10.1007/BF01038599. Google Scholar

[25]

W. Miller and E. Akin, Invariant measures for set-valued dynamical systems,, Trans. Amer. Math. Soc., 351 (1999), 1203. doi: 10.1090/S0002-9947-99-02424-1. Google Scholar

[26]

S. Y. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems. Contractive case,, Topol. Methods Nonlinear Anal., 32 (2008), 139. Google Scholar

[27]

S. Y. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems, Hyperbolic case,, Topol. Methods Nonlinear Anal., 32 (2008), 151. Google Scholar

[28]

R. T. Rockafellar, Convex Analysis,, Reprint of the 1970 original, (1970). Google Scholar

[29]

Ja. Sinai, On the concept of entropy for a dynamic system, (Russian), Dokl. Akad. Nauk SSSR, 124 (1959), 768. Google Scholar

[30]

Y. Sinai, Kolmogorov-Sinai entropy,, Scholarpedia, 4 (2009). Google Scholar

[31]

C. E. Shannon, A mathematical theory of communication,, Bell System Tech. J., 27 (1948), 379. doi: 10.1002/j.1538-7305.1948.tb01338.x. Google Scholar

[32]

E. Tarafdar, P. Watson and X.-Z. Yuan, Poincare's recurrence theorems for set-valued dynamical systems,, Appl. Math. Lett., 10 (1997), 37. doi: 10.1016/S0893-9659(97)00102-X. Google Scholar

[33]

E. Tarafdar and X.-Z. Yuan, The set-valued dynamic system and its applications to Pareto optima,, Acta Appl. Math., 46 (1997), 93. doi: 10.1023/A:1005722506504. Google Scholar

[34]

J. von Neumann, Mathematische Grundlagen der Quantenmechanik,, Unveränderter Nachdruck der ersten Auflage von 1932, (1932). Google Scholar

[35]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982). Google Scholar

[36]

A. J. Zaslavski, Convergence of trajectories of discrete dispersive dynamical systems,, Commun. Math. Anal., 4 (2008), 10. Google Scholar

[1]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[2]

Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309

[3]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[4]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[5]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[6]

Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041

[7]

Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435

[8]

Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial & Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1

[9]

Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246

[10]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[11]

Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548

[12]

Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751

[13]

James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667

[14]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[15]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[16]

Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial & Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019

[17]

Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales. Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks & Heterogeneous Media, 2013, 8 (3) : 745-772. doi: 10.3934/nhm.2013.8.745

[18]

Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57

[19]

Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673

[20]

Zhiang Zhou, Xinmin Yang, Kequan Zhao. $E$-super efficiency of set-valued optimization problems involving improvement sets. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1031-1039. doi: 10.3934/jimo.2016.12.1031

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (2)

[Back to Top]