December  2015, 20(10): 3435-3459. doi: 10.3934/dcdsb.2015.20.3435

Realizing subexponential entropy growth rates by cutting and stacking

1. 

Department of Mathematics, John Brown University, 2000 W. University St, Siloam Springs, AR 72761, United States

Received  October 2014 Revised  March 2015 Published  September 2015

We show that for any concave positive function $f$ defined on $[0,\infty)$ with $\lim_{x\rightarrow\infty}f(x)/x=0$ there exists a rank one system $(X_f,T_f)$ such that $\limsup_{n\rightarrow\infty} H(\alpha_0^{n-1})/f(n)\ge 1$ for all nontrivial partitions $\alpha$ of $X_f$ into two sets and that there is one partition $\alpha$ of $X_f$ into two sets for which the limit superior of $H(\alpha_0^{n-1})/f(n)$ is equal to one whenever the condition $\lim_{x\rightarrow\infty}\ln x/f(x)=0$ is satisfied. Furthermore, for each system $(X_f,T_f)$ we also identify the minimal entropy growth rate in the limit inferior.
Citation: Frank Blume. Realizing subexponential entropy growth rates by cutting and stacking. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3435-3459. doi: 10.3934/dcdsb.2015.20.3435
References:
[1]

F. Blume, An entropy estimate for infinite interval exchange transformations,, Mathematische Zeitschrift, 272 (2012), 17. doi: 10.1007/s00209-011-0919-2. Google Scholar

[2]

F. Blume, Minimal rates of entropy convergence for completely ergodic systems,, Israel Journal of Mathematics, 108 (1998), 1. doi: 10.1007/BF02783038. Google Scholar

[3]

F. Blume, Minimal rates of entropy convergence for rank one systems,, Discrete and Continuous Dynamical Systems, 6 (2000), 773. doi: 10.3934/dcds.2000.6.773. Google Scholar

[4]

F. Blume, On the relation between entropy and the average complexity of trajectories in dynamical systems,, Computational Complexity, 9 (2000), 146. doi: 10.1007/PL00001604. Google Scholar

[5]

F. Blume, On the relation between entropy convergence rates and Baire category,, Mathematische Zeitschrift, 271 (2012), 723. doi: 10.1007/s00209-011-0887-6. Google Scholar

[6]

F. Blume, Possible rates of entropy convergence,, Ergodic Theory and Dynamical Systems, 17 (1997), 45. doi: 10.1017/S0143385797069733. Google Scholar

[7]

F. Blume, The Rate of Entropy Convergence,, Doctoral Dissertation, (1995). Google Scholar

[8]

A. Katok and J.-P. Thouvenot, Slow entropy type invariants and smooth realization of commuting measure-preserving transformations,, Annales de l'Institut Henri Poincare (B) Probability and Statistics, 33 (1997), 323. doi: 10.1016/S0246-0203(97)80094-5. Google Scholar

[9]

W. Parry, Entropy and Generators in Ergodic Theory,, Benjamin, (1969). Google Scholar

[10]

K. E. Petersen, Ergodic Theory,, Cambridge University Press, (1983). doi: 10.1017/CBO9780511608728. Google Scholar

show all references

References:
[1]

F. Blume, An entropy estimate for infinite interval exchange transformations,, Mathematische Zeitschrift, 272 (2012), 17. doi: 10.1007/s00209-011-0919-2. Google Scholar

[2]

F. Blume, Minimal rates of entropy convergence for completely ergodic systems,, Israel Journal of Mathematics, 108 (1998), 1. doi: 10.1007/BF02783038. Google Scholar

[3]

F. Blume, Minimal rates of entropy convergence for rank one systems,, Discrete and Continuous Dynamical Systems, 6 (2000), 773. doi: 10.3934/dcds.2000.6.773. Google Scholar

[4]

F. Blume, On the relation between entropy and the average complexity of trajectories in dynamical systems,, Computational Complexity, 9 (2000), 146. doi: 10.1007/PL00001604. Google Scholar

[5]

F. Blume, On the relation between entropy convergence rates and Baire category,, Mathematische Zeitschrift, 271 (2012), 723. doi: 10.1007/s00209-011-0887-6. Google Scholar

[6]

F. Blume, Possible rates of entropy convergence,, Ergodic Theory and Dynamical Systems, 17 (1997), 45. doi: 10.1017/S0143385797069733. Google Scholar

[7]

F. Blume, The Rate of Entropy Convergence,, Doctoral Dissertation, (1995). Google Scholar

[8]

A. Katok and J.-P. Thouvenot, Slow entropy type invariants and smooth realization of commuting measure-preserving transformations,, Annales de l'Institut Henri Poincare (B) Probability and Statistics, 33 (1997), 323. doi: 10.1016/S0246-0203(97)80094-5. Google Scholar

[9]

W. Parry, Entropy and Generators in Ergodic Theory,, Benjamin, (1969). Google Scholar

[10]

K. E. Petersen, Ergodic Theory,, Cambridge University Press, (1983). doi: 10.1017/CBO9780511608728. Google Scholar

[1]

Paulina Grzegorek, Michal Kupsa. Exponential return times in a zero-entropy process. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1339-1361. doi: 10.3934/cpaa.2012.11.1339

[2]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[3]

Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 773-796. doi: 10.3934/dcds.2000.6.773

[4]

Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237

[5]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[6]

John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

[7]

Xianchao Xiu, Lingchen Kong. Rank-one and sparse matrix decomposition for dynamic MRI. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 127-134. doi: 10.3934/naco.2015.5.127

[8]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[9]

Karsten Keller, Sergiy Maksymenko, Inga Stolz. Entropy determination based on the ordinal structure of a dynamical system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3507-3524. doi: 10.3934/dcdsb.2015.20.3507

[10]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations & Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[11]

Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191

[12]

Gabriele Link, Jean-Claude Picaud. Ergodic geometry for non-elementary rank one manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6257-6284. doi: 10.3934/dcds.2016072

[13]

Jessy Mallet, Stéphane Brull, Bruno Dubroca. General moment system for plasma physics based on minimum entropy principle. Kinetic & Related Models, 2015, 8 (3) : 533-558. doi: 10.3934/krm.2015.8.533

[14]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[15]

Manfred Einsiedler, Elon Lindenstrauss. Symmetry of entropy in higher rank diagonalizable actions and measure classification. Journal of Modern Dynamics, 2018, 13: 163-185. doi: 10.3934/jmd.2018016

[16]

Katayun Barmak, Eva Eggeling, Maria Emelianenko, Yekaterina Epshteyn, David Kinderlehrer, Richard Sharp, Shlomo Ta'asan. An entropy based theory of the grain boundary character distribution. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 427-454. doi: 10.3934/dcds.2011.30.427

[17]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[18]

César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577

[19]

Harald Garcke, Kei Fong Lam. Analysis of a Cahn--Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4277-4308. doi: 10.3934/dcds.2017183

[20]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]