2015, 20(10): 3403-3413. doi: 10.3934/dcdsb.2015.20.3403

Semiconjugacy to a map of a constant slope

1. 

Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Barcelona

2. 

Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202

Received  October 2014 Revised  March 2015 Published  September 2015

It is well known that a continuous piecewise monotone interval map with positive topological entropy is semiconjugate to a map of a constant slope and the same entropy, and if it is additionally transitive then this semiconjugacy is actually a conjugacy. We generalize this result to piecewise continuous piecewise monotone interval maps, and as a consequence, get it also for piecewise monotone graph maps. We show that assigning to a continuous transitive piecewise monotone map of positive entropy a map of constant slope conjugate to it defines an operator, and show that this operator is not continuous.
Citation: Lluís Alsedà, Michał Misiurewicz. Semiconjugacy to a map of a constant slope. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3403-3413. doi: 10.3934/dcdsb.2015.20.3403
References:
[1]

Ll. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One,, Second Edition, (2000). doi: 10.1142/4205.

[2]

A. M. Blokh, Sensitive mappings of an interval,, Uspekhi Mat. Nauk., 37 (1982), 189.

[3]

M. Denker, G. Keller and M. Urbañski, On the uniqueness of equilibrium states for piecewise monotone mappings,, Studia Math., 97 (1990), 27.

[4]

F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II,, Israel J. Math., 38 (1981), 107. doi: 10.1007/BF02761854.

[5]

T.-Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself,, Trans. Amer. Math. Soc., 235 (1978), 183. doi: 10.1090/S0002-9947-1978-0457679-0.

[6]

J. Llibre and M. Misiurewicz, Horseshoes, entropy and periods for graph maps,, Topology, 32 (1993), 649. doi: 10.1016/0040-9383(93)90014-M.

[7]

J. Milnor and W. Thurston, On iterated maps of the interval,, in Dynamical Systems (College Park, (1342), 1986. doi: 10.1007/BFb0082847.

[8]

M. Misiurewicz, Absolutely continuous measures for certain maps of an interval,, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 17.

[9]

M. Misiurewicz, Possible jumps of entropy for interval maps,, Qualit. Th. Dyn. Sys., 2 (2001), 289. doi: 10.1007/BF02969344.

[10]

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings,, Studia Math., 67 (1980), 45.

[11]

M. Misiurewicz and K. Ziemian, Horseshoes and entropy for piecewise continuous piecewise monotone maps,, in From Phase Transitions to Chaos, (1992), 489.

[12]

W. Parry, Symbolic dynamics and transformations of the unit interval,, Trans. Amer. Math. Soc., 122 (1966), 368. doi: 10.1090/S0002-9947-1966-0197683-5.

[13]

P. Raith, Hausdorff dimension for piecewise monotonic maps,, Studia Math., 94 (1989), 17.

[14]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).

show all references

References:
[1]

Ll. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One,, Second Edition, (2000). doi: 10.1142/4205.

[2]

A. M. Blokh, Sensitive mappings of an interval,, Uspekhi Mat. Nauk., 37 (1982), 189.

[3]

M. Denker, G. Keller and M. Urbañski, On the uniqueness of equilibrium states for piecewise monotone mappings,, Studia Math., 97 (1990), 27.

[4]

F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II,, Israel J. Math., 38 (1981), 107. doi: 10.1007/BF02761854.

[5]

T.-Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself,, Trans. Amer. Math. Soc., 235 (1978), 183. doi: 10.1090/S0002-9947-1978-0457679-0.

[6]

J. Llibre and M. Misiurewicz, Horseshoes, entropy and periods for graph maps,, Topology, 32 (1993), 649. doi: 10.1016/0040-9383(93)90014-M.

[7]

J. Milnor and W. Thurston, On iterated maps of the interval,, in Dynamical Systems (College Park, (1342), 1986. doi: 10.1007/BFb0082847.

[8]

M. Misiurewicz, Absolutely continuous measures for certain maps of an interval,, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 17.

[9]

M. Misiurewicz, Possible jumps of entropy for interval maps,, Qualit. Th. Dyn. Sys., 2 (2001), 289. doi: 10.1007/BF02969344.

[10]

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings,, Studia Math., 67 (1980), 45.

[11]

M. Misiurewicz and K. Ziemian, Horseshoes and entropy for piecewise continuous piecewise monotone maps,, in From Phase Transitions to Chaos, (1992), 489.

[12]

W. Parry, Symbolic dynamics and transformations of the unit interval,, Trans. Amer. Math. Soc., 122 (1966), 368. doi: 10.1090/S0002-9947-1966-0197683-5.

[13]

P. Raith, Hausdorff dimension for piecewise monotonic maps,, Studia Math., 94 (1989), 17.

[14]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).

[1]

Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673

[2]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

[3]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[4]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[5]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[6]

Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451

[7]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[8]

Samuel Roth. Constant slope models for finitely generated maps. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2541-2554. doi: 10.3934/dcds.2018106

[9]

Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192

[10]

Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433

[11]

José M. Amigó, Ángel Giménez. Formulas for the topological entropy of multimodal maps based on min-max symbols. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3415-3434. doi: 10.3934/dcdsb.2015.20.3415

[12]

Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105

[13]

Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753

[14]

Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235

[15]

Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127

[16]

Wacław Marzantowicz, Feliks Przytycki. Estimates of the topological entropy from below for continuous self-maps on some compact manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 501-512. doi: 10.3934/dcds.2008.21.501

[17]

Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597

[18]

David Burguet. Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 873-899. doi: 10.3934/dcds.2010.26.873

[19]

Daniel Schnellmann. Typical points for one-parameter families of piecewise expanding maps of the interval. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 877-911. doi: 10.3934/dcds.2011.31.877

[20]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]