2015, 20(8): 2751-2759. doi: 10.3934/dcdsb.2015.20.2751

Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system

1. 

Department of Mathematics, Southeast University, Nanjing 211189, China, China

Received  November 2014 Revised  February 2015 Published  August 2015

We consider an initial-boundary value problem for the incompressible chemotaxis-Navier-Stokes equation \begin{eqnarray*} \left\{\begin{array}{lll} n_t + u \cdot \nabla n = \Delta n - \chi\nabla\cdot(n \nabla c),&{} x\in\Omega,\ t>0,\\ c_t + u \cdot \nabla c = \Delta c - nc, &{} x \in \Omega,\ t>0,\\ u_t + \kappa(u\cdot\nabla)u = \Delta u + \nabla P + n\nabla\phi ,&{} x\in\Omega,\ t>0,\\ \nabla\cdot u=0, &{}x\in\Omega,\ t>0, \end{array}\right. \end{eqnarray*} in a bounded domain $\Omega\subset\mathbb{R}^2$. It is known that if $\chi>0$, $\kappa\in\mathbb{R}$ and $\phi\in C^2(\bar{\Omega})$, for sufficiently smooth initial data, the model possesses a unique global classical solution which satisfies $(n, c, u)\rightarrow(\bar{n}_0, 0, 0)$ as $t\rightarrow\infty$ uniformly with respect to $x\in\Omega$, where $\bar{n}_0:=\frac{1}{|\Omega|}\int_{\Omega}n(x, 0)dx$. In the present paper, we prove this solution converges to $(\bar{n}_0, 0, 0)$ exponentially in time.
Citation: Qingshan Zhang, Yuxiang Li. Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2751-2759. doi: 10.3934/dcdsb.2015.20.2751
References:
[1]

M. Chae, K. Kang and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations,, Discrete Contin. Dyn. Syst., 33 (2013), 2271. doi: 10.3934/dcds.2013.33.2271.

[2]

M. Chae, K. Kang and J. Lee, Global existence and temporal decay in Keller-Segel models coupled to fluid equations,, Comm. Partial Differential Equations, 39 (2014), 1205. doi: 10.1080/03605302.2013.852224.

[3]

M. Di Francesco, A. Lorz and P. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior,, Discrete Contin. Dyn. Syst., 28 (2010), 1437. doi: 10.3934/dcds.2010.28.1437.

[4]

R. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations,, Comm. Partial Differential Equations, 35 (2010), 1635. doi: 10.1080/03605302.2010.497199.

[5]

R. Duan and Z. Xiang, A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion,, Int. Math. Res. Not. IMRN, (2014), 1833.

[6]

J. Jiang, H. Wu and S. Zheng, Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domain,, preprint, ().

[7]

J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643. doi: 10.1016/j.anihpc.2011.04.005.

[8]

A. Lorz, Coupled chemotaxis fluid model,, Math. Models Methods Appl. Sci., 20 (2010), 987. doi: 10.1142/S0218202510004507.

[9]

A. Lorz, A coupled Keller-Segel-Stokes model: Global existence for small initial data and blow-up delay,, Commun. Math. Sci., 10 (2012), 555. doi: 10.4310/CMS.2012.v10.n2.a7.

[10]

Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion,, Discrete Contin. Dyn. Syst., 32 (2012), 1901. doi: 10.3934/dcds.2012.32.1901.

[11]

Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 157. doi: 10.1016/j.anihpc.2012.07.002.

[12]

I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines,, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 2277. doi: 10.1073/pnas.0406724102.

[13]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008.

[14]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops,, Comm. Partial Differential Equations, 37 (2012), 319. doi: 10.1080/03605302.2011.591865.

[15]

M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening,, J. Differential Equations, 257 (2014), 1056. doi: 10.1016/j.jde.2014.04.023.

[16]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system,, preprint, ().

[17]

M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system,, Arch. Ration. Mech. Anal., 211 (2014), 455. doi: 10.1007/s00205-013-0678-9.

[18]

Q. Zhang, Local well-posedness for the chemotaxis-Navier-Stokes equations in Besov spaces,, Nonlinear Anal. Real World Appl., 17 (2014), 89. doi: 10.1016/j.nonrwa.2013.10.008.

[19]

Q. Zhang and X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations,, SIAM J. Math. Anal., 46 (2014), 3078. doi: 10.1137/130936920.

show all references

References:
[1]

M. Chae, K. Kang and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations,, Discrete Contin. Dyn. Syst., 33 (2013), 2271. doi: 10.3934/dcds.2013.33.2271.

[2]

M. Chae, K. Kang and J. Lee, Global existence and temporal decay in Keller-Segel models coupled to fluid equations,, Comm. Partial Differential Equations, 39 (2014), 1205. doi: 10.1080/03605302.2013.852224.

[3]

M. Di Francesco, A. Lorz and P. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior,, Discrete Contin. Dyn. Syst., 28 (2010), 1437. doi: 10.3934/dcds.2010.28.1437.

[4]

R. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations,, Comm. Partial Differential Equations, 35 (2010), 1635. doi: 10.1080/03605302.2010.497199.

[5]

R. Duan and Z. Xiang, A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion,, Int. Math. Res. Not. IMRN, (2014), 1833.

[6]

J. Jiang, H. Wu and S. Zheng, Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domain,, preprint, ().

[7]

J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643. doi: 10.1016/j.anihpc.2011.04.005.

[8]

A. Lorz, Coupled chemotaxis fluid model,, Math. Models Methods Appl. Sci., 20 (2010), 987. doi: 10.1142/S0218202510004507.

[9]

A. Lorz, A coupled Keller-Segel-Stokes model: Global existence for small initial data and blow-up delay,, Commun. Math. Sci., 10 (2012), 555. doi: 10.4310/CMS.2012.v10.n2.a7.

[10]

Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion,, Discrete Contin. Dyn. Syst., 32 (2012), 1901. doi: 10.3934/dcds.2012.32.1901.

[11]

Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 157. doi: 10.1016/j.anihpc.2012.07.002.

[12]

I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines,, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 2277. doi: 10.1073/pnas.0406724102.

[13]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008.

[14]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops,, Comm. Partial Differential Equations, 37 (2012), 319. doi: 10.1080/03605302.2011.591865.

[15]

M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening,, J. Differential Equations, 257 (2014), 1056. doi: 10.1016/j.jde.2014.04.023.

[16]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system,, preprint, ().

[17]

M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system,, Arch. Ration. Mech. Anal., 211 (2014), 455. doi: 10.1007/s00205-013-0678-9.

[18]

Q. Zhang, Local well-posedness for the chemotaxis-Navier-Stokes equations in Besov spaces,, Nonlinear Anal. Real World Appl., 17 (2014), 89. doi: 10.1016/j.nonrwa.2013.10.008.

[19]

Q. Zhang and X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations,, SIAM J. Math. Anal., 46 (2014), 3078. doi: 10.1137/130936920.

[1]

Hai-Yang Jin, Tian Xiang. Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes sytstem with competitive kinetics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1919-1942. doi: 10.3934/dcdsb.2018249

[2]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[3]

Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

[4]

Xiaoping Zhai, Zhaoyang Yin. Global solutions to the Chemotaxis-Navier-Stokes equations with some large initial data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2829-2859. doi: 10.3934/dcds.2017122

[5]

Yulan Wang. Global solvability in a two-dimensional self-consistent chemotaxis-Navier-Stokes system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 329-349. doi: 10.3934/dcdss.2020019

[6]

Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141

[7]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[8]

Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463

[9]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[10]

Zhong Tan, Xu Zhang, Huaqiao Wang. Asymptotic behavior of Navier-Stokes-Korteweg with friction in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2243-2259. doi: 10.3934/dcds.2014.34.2243

[11]

Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic & Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010

[12]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[13]

Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079

[14]

Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263

[15]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[16]

Anhui Gu, Kening Lu, Bixiang Wang. Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 185-218. doi: 10.3934/dcds.2019008

[17]

Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009

[18]

Tian Ma, Shouhong Wang. Asymptotic structure for solutions of the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 189-204. doi: 10.3934/dcds.2004.11.189

[19]

Yuanyuan Liu, Youshan Tao. Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 465-475. doi: 10.3934/dcdsb.2017021

[20]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]