American Institute of Mathematical Sciences

October  2015, 20(8): 2751-2759. doi: 10.3934/dcdsb.2015.20.2751

Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system

 1 Department of Mathematics, Southeast University, Nanjing 211189, China, China

Received  November 2014 Revised  February 2015 Published  August 2015

We consider an initial-boundary value problem for the incompressible chemotaxis-Navier-Stokes equation \begin{eqnarray*} \left\{\begin{array}{lll} n_t + u \cdot \nabla n = \Delta n - \chi\nabla\cdot(n \nabla c),&{} x\in\Omega,\ t>0,\\ c_t + u \cdot \nabla c = \Delta c - nc, &{} x \in \Omega,\ t>0,\\ u_t + \kappa(u\cdot\nabla)u = \Delta u + \nabla P + n\nabla\phi ,&{} x\in\Omega,\ t>0,\\ \nabla\cdot u=0, &{}x\in\Omega,\ t>0, \end{array}\right. \end{eqnarray*} in a bounded domain $\Omega\subset\mathbb{R}^2$. It is known that if $\chi>0$, $\kappa\in\mathbb{R}$ and $\phi\in C^2(\bar{\Omega})$, for sufficiently smooth initial data, the model possesses a unique global classical solution which satisfies $(n, c, u)\rightarrow(\bar{n}_0, 0, 0)$ as $t\rightarrow\infty$ uniformly with respect to $x\in\Omega$, where $\bar{n}_0:=\frac{1}{|\Omega|}\int_{\Omega}n(x, 0)dx$. In the present paper, we prove this solution converges to $(\bar{n}_0, 0, 0)$ exponentially in time.
Citation: Qingshan Zhang, Yuxiang Li. Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2751-2759. doi: 10.3934/dcdsb.2015.20.2751
References:

show all references

References:
 [1] Hai-Yang Jin, Tian Xiang. Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes sytstem with competitive kinetics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1919-1942. doi: 10.3934/dcdsb.2018249 [2] Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284 [3] Xiaoping Zhai, Zhaoyang Yin. Global solutions to the Chemotaxis-Navier-Stokes equations with some large initial data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2829-2859. doi: 10.3934/dcds.2017122 [4] Yulan Wang. Global solvability in a two-dimensional self-consistent chemotaxis-Navier-Stokes system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 329-349. doi: 10.3934/dcdss.2020019 [5] Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141 [6] Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107 [7] Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907 [8] Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463 [9] Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073 [10] Zhong Tan, Xu Zhang, Huaqiao Wang. Asymptotic behavior of Navier-Stokes-Korteweg with friction in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2243-2259. doi: 10.3934/dcds.2014.34.2243 [11] Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009 [12] Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic & Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010 [13] Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57 [14] Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079 [15] Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263 [16] G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123 [17] Anhui Gu, Kening Lu, Bixiang Wang. Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 185-218. doi: 10.3934/dcds.2019008 [18] Tian Ma, Shouhong Wang. Asymptotic structure for solutions of the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 189-204. doi: 10.3934/dcds.2004.11.189 [19] Yuanyuan Liu, Youshan Tao. Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 465-475. doi: 10.3934/dcdsb.2017021 [20] Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

2018 Impact Factor: 1.008