2015, 20(8): 2691-2714. doi: 10.3934/dcdsb.2015.20.2691

Coexistence solutions of a competition model with two species in a water column

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China

2. 

Department of Mathematics, National Tsing Hua University, National Center of Theoretical Science, Hsinchu 300

Received  October 2014 Revised  March 2015 Published  August 2015

Competition between species for resources is a fundamental ecological process, which can be modeled by the mathematical models in the chemostat culture or in the water column. The chemostat-type models for resource competition have been extensively analyzed. However, the study on the competition for resources in the water column has been relatively neglected as a result of some technical difficulties. We consider a resource competition model with two species in the water column. Firstly, the global existence and $L^\infty$ boundedness of solutions to the model are established by inequality estimates. Secondly, the uniqueness of positive steady state solutions and some dynamical behavior of the single population model are attained by degree theory and uniform persistence theory. Finally, the structure of the coexistence solutions of the two-species system is investigated by the global bifurcation theory.
Citation: Hua Nie, Sze-Bi Hsu, Jianhua Wu. Coexistence solutions of a competition model with two species in a water column. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2691-2714. doi: 10.3934/dcdsb.2015.20.2691
References:
[1]

M. Ballyk, L. Dung, D. A. Jones and H. L. Smith, Effects of random motility on microbial growth and competition in a flow reactor,, SIAM J. Appl. Math., 59 (1999), 573. doi: 10.1137/S0036139997325345.

[2]

R. Courant and D. Hilbert, Methods of Mathematical Physics,, Vol. I, (1953).

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2.

[4]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications,, J. Math. Anal. Appl., 91 (1983), 131. doi: 10.1016/0022-247X(83)90098-7.

[5]

E. N. Dancer, On positive solutions of some pairs of differential equations,, Trans. Amer. Math. Soc., 284 (1984), 729. doi: 10.1090/S0002-9947-1984-0743741-4.

[6]

Y. Du and L. F. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics,, Nonlinearity, 24 (2011), 319. doi: 10.1088/0951-7715/24/1/016.

[7]

J. P. Grover, Resource Competition,, Chapman and Hall, (1997). doi: 10.1007/978-1-4615-6397-6.

[8]

S. B. Hsu, Steady states of a system of partial differential equations modeling microbial ecology,, SIAM J. Math. Anal., 14 (1983), 1130. doi: 10.1137/0514087.

[9]

S. B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column,, SIAM J. Appl. Math., 70 (2010), 2942. doi: 10.1137/100782358.

[10]

S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat,, SIAM J. Appl. Math., 53 (1993), 1026. doi: 10.1137/0153051.

[11]

J. López-Gómez and R. Parda, Existence and uniqueness of coexistence states for the predator-prey model with diffusion: The scalar case,, Differential Integral Equations, 6 (1993), 1025.

[12]

P. Magal and X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,, SIAM J. Math Anal., 37 (2005), 251. doi: 10.1137/S0036141003439173.

[13]

J. P. Mellard, K. Yoshiyama, E. Litchman and C. A. Klausmeier, The vertical distribution of phytoplankton in stratified water columns,, J. Theoret. Biol., 269 (2011), 16. doi: 10.1016/j.jtbi.2010.09.041.

[14]

H. Nie and J. Wu, Multiplicity results for the unstirred chemostat model with general response functions,, Sci. China Math., 56 (2013), 2035. doi: 10.1007/s11425-012-4550-4.

[15]

H. Nie and J. Wu, Positive solutions of a competition model for two resources in the unstirred chemostat,, J. Math. Anal. Appl., 355 (2009), 231. doi: 10.1016/j.jmaa.2009.01.045.

[16]

H. Nie and J. Wu, Uniqueness and stability for coexistence solutions of the unstirred chemostat model,, Appl. Anal., 89 (2010), 1141. doi: 10.1080/00036811003717954.

[17]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains,, J. Differential Equations, 246 (2009), 2788. doi: 10.1016/j.jde.2008.09.009.

[18]

H. L. Smith and X. Q. Zhao, Robust persistence for semidynamical systems,, Nonlinear Anal., 47 (2001), 6169. doi: 10.1016/S0362-546X(01)00678-2.

[19]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, $2^{nd}$ edition, (1994). doi: 10.1007/978-1-4612-0873-0.

[20]

D. Tilman, Resource Competition and Community Structure,, Princeton University Press, (1982).

[21]

M. X. Wang, Nonlinear Elliptic Equations,, (in Chinese) Science Press, (2010).

[22]

J. Wu, H. Nie and G. S. K. Wolkowicz, A mathematical model of competition for two essential resources in the unstirred chemostat,, SIAM J. Appl. Math., 65 (2004), 209. doi: 10.1137/S0036139903423285.

[23]

J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, SIAM J. Math. Anal., 38 (2007), 1860. doi: 10.1137/050627514.

[24]

J. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat,, J. Differential Equations, 172 (2001), 300. doi: 10.1006/jdeq.2000.3870.

[25]

K. Yoshiyama and H. Nakajima, Catastrophic transition in vertical distributions of phytoplankton: alternative equilibria in a water column,, J. Theoret. Biol., 216 (2002), 397. doi: 10.1006/jtbi.2002.3007.

[26]

K. Yoshiyama, J. P. Mellard, E. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a stratified water column,, Am. Nat., 174 (2009), 190. doi: 10.1086/600113.

show all references

References:
[1]

M. Ballyk, L. Dung, D. A. Jones and H. L. Smith, Effects of random motility on microbial growth and competition in a flow reactor,, SIAM J. Appl. Math., 59 (1999), 573. doi: 10.1137/S0036139997325345.

[2]

R. Courant and D. Hilbert, Methods of Mathematical Physics,, Vol. I, (1953).

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2.

[4]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications,, J. Math. Anal. Appl., 91 (1983), 131. doi: 10.1016/0022-247X(83)90098-7.

[5]

E. N. Dancer, On positive solutions of some pairs of differential equations,, Trans. Amer. Math. Soc., 284 (1984), 729. doi: 10.1090/S0002-9947-1984-0743741-4.

[6]

Y. Du and L. F. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics,, Nonlinearity, 24 (2011), 319. doi: 10.1088/0951-7715/24/1/016.

[7]

J. P. Grover, Resource Competition,, Chapman and Hall, (1997). doi: 10.1007/978-1-4615-6397-6.

[8]

S. B. Hsu, Steady states of a system of partial differential equations modeling microbial ecology,, SIAM J. Math. Anal., 14 (1983), 1130. doi: 10.1137/0514087.

[9]

S. B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column,, SIAM J. Appl. Math., 70 (2010), 2942. doi: 10.1137/100782358.

[10]

S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat,, SIAM J. Appl. Math., 53 (1993), 1026. doi: 10.1137/0153051.

[11]

J. López-Gómez and R. Parda, Existence and uniqueness of coexistence states for the predator-prey model with diffusion: The scalar case,, Differential Integral Equations, 6 (1993), 1025.

[12]

P. Magal and X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,, SIAM J. Math Anal., 37 (2005), 251. doi: 10.1137/S0036141003439173.

[13]

J. P. Mellard, K. Yoshiyama, E. Litchman and C. A. Klausmeier, The vertical distribution of phytoplankton in stratified water columns,, J. Theoret. Biol., 269 (2011), 16. doi: 10.1016/j.jtbi.2010.09.041.

[14]

H. Nie and J. Wu, Multiplicity results for the unstirred chemostat model with general response functions,, Sci. China Math., 56 (2013), 2035. doi: 10.1007/s11425-012-4550-4.

[15]

H. Nie and J. Wu, Positive solutions of a competition model for two resources in the unstirred chemostat,, J. Math. Anal. Appl., 355 (2009), 231. doi: 10.1016/j.jmaa.2009.01.045.

[16]

H. Nie and J. Wu, Uniqueness and stability for coexistence solutions of the unstirred chemostat model,, Appl. Anal., 89 (2010), 1141. doi: 10.1080/00036811003717954.

[17]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains,, J. Differential Equations, 246 (2009), 2788. doi: 10.1016/j.jde.2008.09.009.

[18]

H. L. Smith and X. Q. Zhao, Robust persistence for semidynamical systems,, Nonlinear Anal., 47 (2001), 6169. doi: 10.1016/S0362-546X(01)00678-2.

[19]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, $2^{nd}$ edition, (1994). doi: 10.1007/978-1-4612-0873-0.

[20]

D. Tilman, Resource Competition and Community Structure,, Princeton University Press, (1982).

[21]

M. X. Wang, Nonlinear Elliptic Equations,, (in Chinese) Science Press, (2010).

[22]

J. Wu, H. Nie and G. S. K. Wolkowicz, A mathematical model of competition for two essential resources in the unstirred chemostat,, SIAM J. Appl. Math., 65 (2004), 209. doi: 10.1137/S0036139903423285.

[23]

J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, SIAM J. Math. Anal., 38 (2007), 1860. doi: 10.1137/050627514.

[24]

J. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat,, J. Differential Equations, 172 (2001), 300. doi: 10.1006/jdeq.2000.3870.

[25]

K. Yoshiyama and H. Nakajima, Catastrophic transition in vertical distributions of phytoplankton: alternative equilibria in a water column,, J. Theoret. Biol., 216 (2002), 397. doi: 10.1006/jtbi.2002.3007.

[26]

K. Yoshiyama, J. P. Mellard, E. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a stratified water column,, Am. Nat., 174 (2009), 190. doi: 10.1086/600113.

[1]

Todd Young. A result in global bifurcation theory using the Conley index. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387

[2]

Linfeng Mei, Sze-Bi Hsu, Feng-Bin Wang. Growth of single phytoplankton species with internal storage in a water column. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 607-620. doi: 10.3934/dcdsb.2016.21.607

[3]

Danfeng Pang, Hua Nie, Jianhua Wu. Single phytoplankton species growth with light and crowding effect in a water column. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 41-74. doi: 10.3934/dcds.2019003

[4]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[5]

Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070

[6]

Johanna D. García-Saldaña, Armengol Gasull, Hector Giacomini. Bifurcation values for a family of planar vector fields of degree five. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 669-701. doi: 10.3934/dcds.2015.35.669

[7]

Marko Nedeljkov, Sanja Ružičić. On the uniqueness of solution to generalized Chaplygin gas. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4439-4460. doi: 10.3934/dcds.2017190

[8]

Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213

[9]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[10]

Shu-Ming Sun. Existence theory of capillary-gravity waves on water of finite depth. Mathematical Control & Related Fields, 2014, 4 (3) : 315-363. doi: 10.3934/mcrf.2014.4.315

[11]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

[12]

Vladimir V. Chepyzhov, Monica Conti, Vittorino Pata. A minimal approach to the theory of global attractors. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2079-2088. doi: 10.3934/dcds.2012.32.2079

[13]

Carmen Núñez, Rafael Obaya. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 701-730. doi: 10.3934/dcdsb.2008.9.701

[14]

Klaus Reiner Schenk-Hoppé. Random attractors--general properties, existence and applications to stochastic bifurcation theory. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 99-130. doi: 10.3934/dcds.1998.4.99

[15]

Jaume Llibre, Claudio A. Buzzi, Paulo R. da Silva. 3-dimensional Hopf bifurcation via averaging theory. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 529-540. doi: 10.3934/dcds.2007.17.529

[16]

Jaume Llibre, Amar Makhlouf, Sabrina Badi. $3$ - dimensional Hopf bifurcation via averaging theory of second order. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1287-1295. doi: 10.3934/dcds.2009.25.1287

[17]

Tian Ma, Shouhong Wang. Attractor bifurcation theory and its applications to Rayleigh-Bénard convection. Communications on Pure & Applied Analysis, 2003, 2 (4) : 591-599. doi: 10.3934/cpaa.2003.2.591

[18]

Kunquan Lan, Wei Lin. Uniqueness of nonzero positive solutions of Laplacian elliptic equations arising in combustion theory. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 849-861. doi: 10.3934/dcdsb.2016.21.849

[19]

Lora Billings, Erik M. Bollt, David Morgan, Ira B. Schwartz. Stochastic global bifurcation in perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 123-132. doi: 10.3934/proc.2003.2003.123

[20]

M. R. S. Kulenović, Orlando Merino. Global bifurcation for discrete competitive systems in the plane. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 133-149. doi: 10.3934/dcdsb.2009.12.133

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]