2015, 20(8): 2453-2476. doi: 10.3934/dcdsb.2015.20.2453

Grid refinement in the construction of Lyapunov functions using radial basis functions

1. 

Department of Mathematics, University of Sussex, Falmer BN1 9QH, United Kingdom

Received  September 2014 Revised  January 2015 Published  August 2015

Lyapunov functions are a main tool to determine the domain of attraction of equilibria in dynamical systems. Recently, several methods have been presented to construct a Lyapunov function for a given system. In this paper, we improve the construction method for Lyapunov functions using Radial Basis Functions. We combine this method with a new grid refinement algorithm based on Voronoi diagrams. Starting with a coarse grid and applying the refinement algorithm, we thus manage to reduce the number of data points needed to construct Lyapunov functions. Finally, we give numerical examples to illustrate our algorithms.
Citation: Najla Mohammed, Peter Giesl. Grid refinement in the construction of Lyapunov functions using radial basis functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2453-2476. doi: 10.3934/dcdsb.2015.20.2453
References:
[1]

M. Berg, O. Cheong, M. Kerveld and M. Overmars, Computational Geometry: Algorithms and Applications,, Springer-Verlag, (2008).

[2]

M. D. Buhmann, Radial basis functions,, in Acta Numerica, (2000), 1. doi: 10.1017/S0962492900000015.

[3]

F. Camilli, L. Grüne and F. Wirth, A generalization of Zubov's method to perturbed systems,, SIAM J. Control Optim., 40 (2001), 496. doi: 10.1137/S036301299936316X.

[4]

M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems,, in Handbook of Dynamical Systems, (2002), 221. doi: 10.1016/S1874-575X(02)80026-1.

[5]

M. Floater and A. Iske, Multistep scattered data interpolation using compactly supported Radial Basis Functions,, J. Comput. Appl. Math., 73 (1996), 65. doi: 10.1016/0377-0427(96)00035-0.

[6]

P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions,, Lecture Notes in Math., (1904).

[7]

P. Giesl, Construction of a local and global Lyapunov function using Radial Basis Functions,, IMA J. Appl. Math., 73 (2008), 782. doi: 10.1093/imamat/hxn018.

[8]

P. Giesl and S. Hafstein, Revised CPA method to compute Lyapunov functions for nonlinear systems,, J. Math. Anal. Appl., 410 (2014), 292. doi: 10.1016/j.jmaa.2013.08.014.

[9]

P. Giesl and S. Hafstein, Review on computational methods for Lyapunov functions,, Discrete and Continuous Dynamical Systems - Series B, 8 (2015), 2291. doi: 10.3934/dcdsb.2015.20.2291.

[10]

P. Giesl and H. Wendland, Meshless collocation: Error estimates with application to Dynamical Systems,, SIAM J. Numer. Anal., 45 (2007), 1723. doi: 10.1137/060658813.

[11]

L. Grüne, An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation,, Numer. Math., 75 (1997), 319. doi: 10.1007/s002110050241.

[12]

L. Grüne, Asymptotic Behavior of Dynamical and Control Systems Under Perturbation and Discretization,, Lecture Notes in Mathematics, (1783). doi: 10.1007/b83677.

[13]

S. Hafstein, A constructive converse Lyapunov theorem on exponential stability,, Discrete and Continuous Dynamical Systems - Series A, 10 (2004), 657. doi: 10.3934/dcds.2004.10.657.

[14]

S. Hafstein, An algorithm for constructing Lyapunov functions,, Monograph. Electron. J. Diff. Eqns., (2007).

[15]

C. S. Hsu, Cell-to-cell Mapping,, Applied Mathematical Sciences, (1987). doi: 10.1007/978-1-4757-3892-6.

[16]

A. Iske, On the construction of kernel-based adaptive particle methods in numerical flow simulation,, in Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, (2013), 197. doi: 10.1007/978-3-642-33221-0_12.

[17]

S. Iyengar, K. Boroojeni and N. Balakrishnan, Mathematical Theories of Distributed Sensor Networks,, Springer, (2014). doi: 10.1007/978-1-4419-8420-3.

[18]

Z. Jian, Development of Strong Form Methods with Applications in Computational Mechanics,, PhD thesis, (2008).

[19]

C. Kellett, Classical converse theorems in Lyapunov’s second method,, Discrete and Continuous Dynamical Systems - Series B, 8 (2015), 2333. doi: 10.3934/dcdsb.2015.20.2333.

[20]

R. Klein, Concrete and Abstract Voronoi Diagrams,, Lecture Notes in Computer Science, (1989). doi: 10.1007/3-540-52055-4.

[21]

J. Massera, On Liapounoff's conditions of stability,, Ann. of Math., 50 (1949), 705.

[22]

A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Pranja, P. Seiler and P. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB,, User's guide. Version 3.00 edition, (2013).

[23]

P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimiza,, PhD thesis, (2000).

[24]

F. Preparata and M. Shamos, Computational Geometry,, Texts and Monographs in Computer Science, (1985). doi: 10.1007/978-1-4612-1098-6.

[25]

J. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh generation,, J. Approx. Theory, 18 (1995), 548. doi: 10.1006/jagm.1995.1021.

[26]

R. Sibson, Development of strong form methods with applications in computational mechanics,, in Interpolating Multivariate Data, (1981).

[27]

H. Wendland, Error estimates for interpolation by compactly supported Radial Basis Functions of minimal degree,, J. Approx. Theory, 93 (1998), 258. doi: 10.1006/jath.1997.3137.

[28]

H. Wendland, Scattered Data Approximation,, Cambridge Monographs on Applied and Computational Mathematics, (2005).

[29]

X. Zhang, R. Ding and Y. Li, Adaptive RPIM meshless method,, in Proceedings of the 2011 International Conference on Multimedia Technology (ICMT), (2011), 2388.

show all references

References:
[1]

M. Berg, O. Cheong, M. Kerveld and M. Overmars, Computational Geometry: Algorithms and Applications,, Springer-Verlag, (2008).

[2]

M. D. Buhmann, Radial basis functions,, in Acta Numerica, (2000), 1. doi: 10.1017/S0962492900000015.

[3]

F. Camilli, L. Grüne and F. Wirth, A generalization of Zubov's method to perturbed systems,, SIAM J. Control Optim., 40 (2001), 496. doi: 10.1137/S036301299936316X.

[4]

M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems,, in Handbook of Dynamical Systems, (2002), 221. doi: 10.1016/S1874-575X(02)80026-1.

[5]

M. Floater and A. Iske, Multistep scattered data interpolation using compactly supported Radial Basis Functions,, J. Comput. Appl. Math., 73 (1996), 65. doi: 10.1016/0377-0427(96)00035-0.

[6]

P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions,, Lecture Notes in Math., (1904).

[7]

P. Giesl, Construction of a local and global Lyapunov function using Radial Basis Functions,, IMA J. Appl. Math., 73 (2008), 782. doi: 10.1093/imamat/hxn018.

[8]

P. Giesl and S. Hafstein, Revised CPA method to compute Lyapunov functions for nonlinear systems,, J. Math. Anal. Appl., 410 (2014), 292. doi: 10.1016/j.jmaa.2013.08.014.

[9]

P. Giesl and S. Hafstein, Review on computational methods for Lyapunov functions,, Discrete and Continuous Dynamical Systems - Series B, 8 (2015), 2291. doi: 10.3934/dcdsb.2015.20.2291.

[10]

P. Giesl and H. Wendland, Meshless collocation: Error estimates with application to Dynamical Systems,, SIAM J. Numer. Anal., 45 (2007), 1723. doi: 10.1137/060658813.

[11]

L. Grüne, An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation,, Numer. Math., 75 (1997), 319. doi: 10.1007/s002110050241.

[12]

L. Grüne, Asymptotic Behavior of Dynamical and Control Systems Under Perturbation and Discretization,, Lecture Notes in Mathematics, (1783). doi: 10.1007/b83677.

[13]

S. Hafstein, A constructive converse Lyapunov theorem on exponential stability,, Discrete and Continuous Dynamical Systems - Series A, 10 (2004), 657. doi: 10.3934/dcds.2004.10.657.

[14]

S. Hafstein, An algorithm for constructing Lyapunov functions,, Monograph. Electron. J. Diff. Eqns., (2007).

[15]

C. S. Hsu, Cell-to-cell Mapping,, Applied Mathematical Sciences, (1987). doi: 10.1007/978-1-4757-3892-6.

[16]

A. Iske, On the construction of kernel-based adaptive particle methods in numerical flow simulation,, in Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, (2013), 197. doi: 10.1007/978-3-642-33221-0_12.

[17]

S. Iyengar, K. Boroojeni and N. Balakrishnan, Mathematical Theories of Distributed Sensor Networks,, Springer, (2014). doi: 10.1007/978-1-4419-8420-3.

[18]

Z. Jian, Development of Strong Form Methods with Applications in Computational Mechanics,, PhD thesis, (2008).

[19]

C. Kellett, Classical converse theorems in Lyapunov’s second method,, Discrete and Continuous Dynamical Systems - Series B, 8 (2015), 2333. doi: 10.3934/dcdsb.2015.20.2333.

[20]

R. Klein, Concrete and Abstract Voronoi Diagrams,, Lecture Notes in Computer Science, (1989). doi: 10.1007/3-540-52055-4.

[21]

J. Massera, On Liapounoff's conditions of stability,, Ann. of Math., 50 (1949), 705.

[22]

A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Pranja, P. Seiler and P. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB,, User's guide. Version 3.00 edition, (2013).

[23]

P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimiza,, PhD thesis, (2000).

[24]

F. Preparata and M. Shamos, Computational Geometry,, Texts and Monographs in Computer Science, (1985). doi: 10.1007/978-1-4612-1098-6.

[25]

J. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh generation,, J. Approx. Theory, 18 (1995), 548. doi: 10.1006/jagm.1995.1021.

[26]

R. Sibson, Development of strong form methods with applications in computational mechanics,, in Interpolating Multivariate Data, (1981).

[27]

H. Wendland, Error estimates for interpolation by compactly supported Radial Basis Functions of minimal degree,, J. Approx. Theory, 93 (1998), 258. doi: 10.1006/jath.1997.3137.

[28]

H. Wendland, Scattered Data Approximation,, Cambridge Monographs on Applied and Computational Mathematics, (2005).

[29]

X. Zhang, R. Ding and Y. Li, Adaptive RPIM meshless method,, in Proceedings of the 2011 International Conference on Multimedia Technology (ICMT), (2011), 2388.

[1]

Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101

[2]

Martin D. Buhmann, Slawomir Dinew. Limits of radial basis function interpolants. Communications on Pure & Applied Analysis, 2007, 6 (3) : 569-585. doi: 10.3934/cpaa.2007.6.569

[3]

Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387

[4]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[5]

Nahid Banihashemi, C. Yalçın Kaya. Inexact restoration and adaptive mesh refinement for optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 521-542. doi: 10.3934/jimo.2014.10.521

[6]

Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57

[7]

Robert Baier, Lars Grüne, Sigurđur Freyr Hafstein. Linear programming based Lyapunov function computation for differential inclusions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 33-56. doi: 10.3934/dcdsb.2012.17.33

[8]

Łukasz Struski, Jacek Tabor. Expansivity implies existence of Hölder continuous Lyapunov function. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3575-3589. doi: 10.3934/dcdsb.2017180

[9]

Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767

[10]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[11]

Oliver Junge, Alex Schreiber. Dynamic programming using radial basis functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4439-4453. doi: 10.3934/dcds.2015.35.4439

[12]

Sohana Jahan, Hou-Duo Qi. Regularized multidimensional scaling with radial basis functions. Journal of Industrial & Management Optimization, 2016, 12 (2) : 543-563. doi: 10.3934/jimo.2016.12.543

[13]

Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225

[14]

Sigurdur Hafstein, Skuli Gudmundsson, Peter Giesl, Enrico Scalas. Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 939-956. doi: 10.3934/dcdsb.2018049

[15]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[16]

Jianling Li, Chunting Lu, Youfang Zeng. A smooth QP-free algorithm without a penalty function or a filter for mathematical programs with complementarity constraints. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 115-126. doi: 10.3934/naco.2015.5.115

[17]

Peter Giesl, Holger Wendland. Approximating the basin of attraction of time-periodic ODEs by meshless collocation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1249-1274. doi: 10.3934/dcds.2009.25.1249

[18]

Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010

[19]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[20]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]