# American Institute of Mathematical Sciences

October  2015, 20(8): 2383-2417. doi: 10.3934/dcdsb.2015.20.2383

## Polynomial optimization with applications to stability analysis and control - Alternatives to sum of squares

 1 School of Matter, Transport and Energy, Arizona State University, 650 E. Tyler Mall - GWC 531, Tempe, 85281, United States 2 School of Matter, Transport and Energy, Arizona State University, 501 Tyler Mall - ECG 301, Tempe, 85281, United States

Received  June 2014 Revised  December 2014 Published  August 2015

In this paper, we explore the merits of various algorithms for solving polynomial optimization and optimization of polynomials, focusing on alternatives to sum of squares programming. While we refer to advantages and disadvantages of Quantifier Elimination, Reformulation Linear Techniques, Blossoming and Groebner basis methods, our main focus is on algorithms defined by Polya's theorem, Bernstein's theorem and Handelman's theorem. We first formulate polynomial optimization problems as verifying the feasibility of semi-algebraic sets. Then, we discuss how Polya's algorithm, Bernstein's algorithm and Handelman's algorithm reduce the intractable problem of feasibility of semi-algebraic sets to linear and/or semi-definite programming. We apply these algorithms to different problems in robust stability analysis and stability of nonlinear dynamical systems. As one contribution of this paper, we apply Polya's algorithm to the problem of $H_\infty$ control of systems with parametric uncertainty. Numerical examples are provided to compare the accuracy of these algorithms with other polynomial optimization algorithms in the literature.
Citation: Reza Kamyar, Matthew M. Peet. Polynomial optimization with applications to stability analysis and control - Alternatives to sum of squares. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2383-2417. doi: 10.3934/dcdsb.2015.20.2383
##### References:

show all references

##### References:
 [1] Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555 [2] Fatiha Alabau-Boussouira, Piermarco Cannarsa. A constructive proof of Gibson's stability theorem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 611-617. doi: 10.3934/dcdss.2013.6.611 [3] Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics & Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011 [4] John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367 [5] Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313 [6] Sergei Ivanov. On Helly's theorem in geodesic spaces. Electronic Research Announcements, 2014, 21: 109-112. doi: 10.3934/era.2014.21.109 [7] Sigurdur Freyr Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 657-678. doi: 10.3934/dcds.2004.10.657 [8] V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 413-425. doi: 10.3934/dcds.2008.22.413 [9] Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43 [10] Lena Noethen, Sebastian Walcher. Tikhonov's theorem and quasi-steady state. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 945-961. doi: 10.3934/dcdsb.2011.16.945 [11] Koray Karabina, Edward Knapp, Alfred Menezes. Generalizations of Verheul's theorem to asymmetric pairings. Advances in Mathematics of Communications, 2013, 7 (1) : 103-111. doi: 10.3934/amc.2013.7.103 [12] Mateusz Krukowski. Arzelà-Ascoli's theorem in uniform spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 283-294. doi: 10.3934/dcdsb.2018020 [13] Shalosh B. Ekhad and Doron Zeilberger. Proof of Conway's lost cosmological theorem. Electronic Research Announcements, 1997, 3: 78-82. [14] Florian Wagener. A parametrised version of Moser's modifying terms theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 719-768. doi: 10.3934/dcdss.2010.3.719 [15] Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067 [16] Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015 [17] Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990 [18] Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491 [19] Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619 [20] Ben Green, Terence Tao, Tamar Ziegler. An inverse theorem for the Gowers $U^{s+1}[N]$-norm. Electronic Research Announcements, 2011, 18: 69-90. doi: 10.3934/era.2011.18.69

2018 Impact Factor: 1.008