# American Institute of Mathematical Sciences

October  2015, 20(8): 2291-2331. doi: 10.3934/dcdsb.2015.20.2291

## Review on computational methods for Lyapunov functions

 1 Department of Mathematics, University of Sussex, Falmer BN1 9QH 2 School of Science and Engineering, Reykjavik University, Menntavegi 1, IS-101 Reykjavik

Received  August 2014 Revised  January 2015 Published  August 2015

Lyapunov functions are an essential tool in the stability analysis of dynamical systems, both in theory and applications. They provide sufficient conditions for the stability of equilibria or more general invariant sets, as well as for their basin of attraction. The necessity, i.e. the existence of Lyapunov functions, has been studied in converse theorems, however, they do not provide a general method to compute them.
Because of their importance in stability analysis, numerous computational construction methods have been developed within the Engineering, Informatics, and Mathematics community. They cover different types of systems such as ordinary differential equations, switched systems, non-smooth systems, discrete-time systems etc., and employ different methods such as series expansion, linear programming, linear matrix inequalities, collocation methods, algebraic methods, set-theoretic methods, and many others. This review brings these different methods together. First, the different types of systems, where Lyapunov functions are used, are briefly discussed. In the main part, the computational methods are presented, ordered by the type of method used to construct a Lyapunov function.
Citation: Peter Giesl, Sigurdur Hafstein. Review on computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2291-2331. doi: 10.3934/dcdsb.2015.20.2291
##### References:
 [1] N. Aghannan and P. Rouchon, An intrinsic observer for a class of Lagrangian systems,, IEEE Trans. Automat. Control, 48 (2003), 936. doi: 10.1109/TAC.2003.812778. Google Scholar [2] A. Agrachev and D. Liberzon, Lie-algebraic stability criteria for switched systems,, SIAM J. Control Optim., 40 (2001), 253. doi: 10.1137/S0363012999365704. Google Scholar [3] A. Ahmadi and R. Jungers, On complexity of Lyapunov functions for switched linear systems,, in Proceedings of the 19th World Congress of the International Federation of Automatic Control, (2014). Google Scholar [4] A. Ahmadi, K. Krstic and P. Parrilo, A globally asymptotically stable polynomial vector field with no polynomial Lyapunov function,, in Proceedings of the 50th IEEE Conference on Decision and Control (CDC), (2011), 7579. doi: 10.1109/CDC.2011.6161499. Google Scholar [5] A. Ahmadi, A. Majumdar and R. Tedrake, Complexity of ten decision problems in continuous time dynamical systems,, in Proceedings of the American Control Conference, (2013), 6376. doi: 10.1109/ACC.2013.6580838. Google Scholar [6] E. Akin, The General Topology of Dynamical Systems,, American Mathematical Society, (1993). Google Scholar [7] A. Aleksandrov, A. Martynyuk and A. Zhabko, Professor V. I. Zubov to the 80th birthday anniversary,, Nonlinear Dyn. Syst. Theory, 10 (2010), 1. Google Scholar [8] R. Ambrosino and E. Garone, Robust stability of linear uncertain systems through piecewise quadratic Lyapunov functions defined over conical partitions,, in Proceedings of the 51st IEEE Conference on Decision and Control, (2012), 2872. doi: 10.1109/CDC.2012.6427016. Google Scholar [9] J. Anderson and A. Papachristodoulou, Advances in computational Lyapunov analysis using sum-of-squares programming,, Discrete Contin. Dyn. Syst. Ser. B, 8 (2015), 2361. doi: 10.3934/dcdsb.2015.20.2361. Google Scholar [10] D. Angeli, A Lyapunov approach to incremental stability properties,, IEEE Trans. Automat. Contr., 47 (2002), 410. doi: 10.1109/9.989067. Google Scholar [11] E. Aragão-Costa, T. Caraballo, A. Carvalho and J. Langa, Stability of gradient semigroups under perturbations,, Nonlinearity, 24 (2011), 2099. doi: 10.1088/0951-7715/24/7/010. Google Scholar [12] E. Aragão-Costa, T. Caraballo, A. Carvalho and J. Langa, Non-autonomous Morse-decomposition and Lyapunov functions for gradient-like processes,, Trans. Amer. Math. Soc., 365 (2013), 5277. doi: 10.1090/S0002-9947-2013-05810-2. Google Scholar [13] L. Arnold, Stochastic Differential Equations: Theory and Applications,, Wiley, (1974). Google Scholar [14] L. Arnold, Random dynamical systems,, in Dynamical Systems (Montecatini Terme, (1994), 1. doi: 10.1007/BFb0095238. Google Scholar [15] L. Arnold and B. Schmalfuss, Lyapunov's second method for random dynamical systems,, J. Differential Equations, 177 (2001), 235. doi: 10.1006/jdeq.2000.3991. Google Scholar [16] J.-P. Aubin and A. Cellina, Differential Inclusions,, Springer, (1984). doi: 10.1007/978-3-642-69512-4. Google Scholar [17] B. Aulbach, Asymptotic stability regions via extensions of Zubov's method. I, II,, Nonlinear Anal., 7 (1983), 1431. doi: 10.1016/0362-546X(83)90010-X. Google Scholar [18] E. Aylward, P. Parrilo and J.-J. Slotine, Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming,, Automatica, 44 (2008), 2163. doi: 10.1016/j.automatica.2007.12.012. Google Scholar [19] R. Baier, L. Grüne and S. Hafstein, Linear programming based Lyapunov function computation for differential inclusions,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 33. doi: 10.3934/dcdsb.2012.17.33. Google Scholar [20] R. Baier and S. Hafstein, Numerical computation of Control Lyapunov Functions in the sense of generalized gradients,, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS) (no. 0232), (0232), 1173. Google Scholar [21] H. Ban and W. Kalies, A computational approach to Conley's decomposition theorem,, J. Comput. Nonlinear Dynam., 1 (2006), 312. doi: 10.1115/1.2338651. Google Scholar [22] E. Barbašin and N. Krasovskiĭ, On the existence of Lyapunov functions in the case of asymptotic stability in the large,, Prikl. Mat. Meh., 18 (1954), 345. Google Scholar [23] R. Bartels and G. Stewart, Solution of the matrix equation AX+XB=C,, Communications of the ACM, 15 (1972), 820. doi: 10.1145/361573.361582. Google Scholar [24] R. Bellman, Vector Lyapunov functions,, J. SIAM Control Ser. A, 1 (1962), 32. Google Scholar [25] R. Bellman, Introduction to Matrix Analysis,, Classics in Applied Mathematics, (1995). Google Scholar [26] A. Berger, On finite-time hyperbolicity,, Commun. Pure Appl. Anal., 10 (2011), 963. doi: 10.3934/cpaa.2011.10.963. Google Scholar [27] A. Berger, T. S. Doan and S. Siegmund, A definition of spectrum for differential equations on finite time,, J. Differential Equations, 246 (2009), 1098. doi: 10.1016/j.jde.2008.06.036. Google Scholar [28] J. Bernussou and P. Peres, A linear programming oriented procedure for quadratic stabilization of uncertain systems,, Systems Control Lett., 13 (1989), 65. doi: 10.1016/0167-6911(89)90022-4. Google Scholar [29] N. Bhatia and G. Szegő, Dynamical Systems: Stability Theory and Applications,, Lecture Notes in Mathematics, (1967). Google Scholar [30] G. Birkhoff, Dynamical Systems,, American Mathematical Society Colloquium Publications, (1966). Google Scholar [31] J. Björnsson, P. Giesl and S. Hafstein, Algorithmic verification of approximations to complete Lyapunov functions,, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (no. 0180), (0180), 1181. Google Scholar [32] J. Björnsson, P. Giesl, S. Hafstein, C. Kellett and H. Li, Computation of continuous and piecewise affine Lyapunov functions by numerical approximations of the Massera construction,, in Proceedings of the CDC, (2014), 5506. Google Scholar [33] J. Björnsson, P. Giesl, S. Hafstein, C. Kellett and H. Li, Computation of Lyapunov functions for systems with multiple attractors,, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 4019. doi: 10.3934/dcds.2015.35.4019. Google Scholar [34] F. Blanchini, Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions,, in Proceedings of the 30th IEEE Conference on Decision and Control, (1991), 1755. doi: 10.1109/CDC.1991.261708. Google Scholar [35] F. Blanchini, Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions,, IEEE Trans. Automat. Control, 39 (1994), 428. doi: 10.1109/9.272351. Google Scholar [36] F. Blanchini, Nonquadratic Lyapunov functions for robust control,, Automatica, 31 (1995), 451. doi: 10.1016/0005-1098(94)00133-4. Google Scholar [37] F. Blanchini and S. Carabelli, Robust stabilization via computer-generated Lyapunov functions: An application to a magnetic levitation system,, in Proceedings of the 33th IEEE Conference on Decision and Control, (1994), 1105. doi: 10.1109/CDC.1994.411291. Google Scholar [38] F. Blanchini and S. Miani, Set-theoretic Methods in Control,, Systems & Control: Foundations & Applications, (2008). Google Scholar [39] V. Boichenko, G. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations,, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], (2005). doi: 10.1007/978-3-322-80055-8. Google Scholar [40] G. Borg, A Condition for the Existence Of Orbitally Stable Solutions of Dynamical Systems,, Kungliga Tekniska Högskolan Handlingar Stockholm, (1960). Google Scholar [41] J. Bouvrie and B. Hamzi, Model reduction for nonlinear control systems using kernel subspace methods,, , (2011). Google Scholar [42] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, SIAM Studies in Applied Mathematics, (1994). doi: 10.1137/1.9781611970777. Google Scholar [43] S. Boyd and L. Vandenberghe, Convex Optimization,, Cambridge University Press, (2004). doi: 10.1017/CBO9780511804441. Google Scholar [44] M. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,, IEEE Trans. Automat. Control, 43 (1998), 475. doi: 10.1109/9.664150. Google Scholar [45] R. Brayton and C. Tong, Stability of dynamical systems: A constructive approach,, IEEE Trans. Circuits and Systems, 26 (1979), 224. doi: 10.1109/TCS.1979.1084637. Google Scholar [46] R. Brayton and C. Tong, Constructive stability and asymptotic stability of dynamical systems,, IEEE Trans. Circuits and Systems, 27 (1980), 1121. doi: 10.1109/TCS.1980.1084749. Google Scholar [47] M. Buhmann, Radial Basis Functions: Theory and Implementations,, Cambridge Monographs on Applied and Computational Mathematics, (2003). doi: 10.1017/CBO9780511543241. Google Scholar [48] H. Burchardt and S. Ratschan, Estimating the region of attraction of ordinary differential equations by quantified constraint solving,, in Proceedings Of The 3rd WSEAS International Conference On Dynamical Systems And Control, (2007), 241. Google Scholar [49] C. Byrnes, Topological methods for nonlinear oscillations,, Notices Amer. Math. Soc., 57 (2010), 1080. Google Scholar [50] F. Camilli, L. Grüne and F. Wirth, A generalization of Zubov's method to perturbed systems,, SIAM J. Control Optim., 40 (2001), 496. doi: 10.1137/S036301299936316X. Google Scholar [51] F. Camilli, L. Grüne and F. Wirth, A regularization of Zubov's equation for robust domains of attraction,, in Nonlinear Control in the Year 2000, (2000), 277. doi: 10.1007/BFb0110220. Google Scholar [52] F. Camilli, L. Grüne and F. Wirth, Control Lyapunov functions and Zubov's method,, SIAM J. Control Optim., 47 (2008), 301. doi: 10.1137/06065129X. Google Scholar [53] A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Applied Mathematical Sciences, (2013). doi: 10.1007/978-1-4614-4581-4. Google Scholar [54] C. Chen and E. Kinnen, Construction of Liapunov functions,, J. Franklin Inst., 289 (1970), 133. doi: 10.1016/0016-0032(70)90299-1. Google Scholar [55] G. Chesi, LMI techniques for optimization over polynomials in control: A survey,, IEEE Trans. Automat. Control, 55 (2010), 2500. doi: 10.1109/TAC.2010.2046926. Google Scholar [56] C. Chicone, Ordinary Differential Equations with Applications,, Texts in Applied Mathematics, (1999). Google Scholar [57] I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,, ACTA Scientific Publishing House, (2002). Google Scholar [58] F. Clarke, Lyapunov functions and discontinuous stabilizing feedback,, Annu. Rev. Control, 35 (2011), 13. doi: 10.1016/j.arcontrol.2011.03.001. Google Scholar [59] F. Clarke, Y. Ledyaev and R. Stern, Asymptotic stability and smooth Lyapunov functions,, J. Differential Equations, 149 (1998), 69. doi: 10.1006/jdeq.1998.3476. Google Scholar [60] C. Conley, Isolated Invariant Sets and the Morse Index,, CBMS Regional Conference Series, (1978). Google Scholar [61] J.-M. Coron, B. d'Andréa Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2. doi: 10.1109/TAC.2006.887903. Google Scholar [62] E. Davison and E. Kurak, A computational method for determining quadratic Lyapunov functions for non-linear systems,, Automatica, 7 (1971), 627. doi: 10.1016/0005-1098(71)90027-6. Google Scholar [63] G. Davrazos and N. Koussoulas, A review of stability results for switched and hybrid systems,, in Proceedings of 9th Mediterranean Conference on Control and Automation, (2001). Google Scholar [64] W. Dayawansa and C. Martin, A converse Lyapunov theorem for a class of dynamical systems which undergo switching,, IEEE Tra, 44 (1999), 751. doi: 10.1109/9.754812. Google Scholar [65] M. Dellnitz, G. Froyland and O. Junge, The algorithms behind {GAIO} - set oriented numerical methods for dynamical systems,, in Ergodic Theory, (2001), 145. Google Scholar [66] M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems,, in Handbook of Dynamical Systems, (2002), 221. doi: 10.1016/S1874-575X(02)80026-1. Google Scholar [67] U. Dini, Fondamenti per la Teoria Delle Funzioni di Variabili Reali,, (in Italian) Pisa, (1878). Google Scholar [68] S. Dubljević and N. Kazantzis, A new Lyapunov design approach for nonlinear systems based on Zubov's method,, Automatica, 38 (2002), 1999. doi: 10.1016/S0005-1098(02)00110-3. Google Scholar [69] N. Eghbal, N. Pariz and A. Karimpour, Discontinuous piecewise quadratic Lyapunov functions for planar piecewise affine systems,, J. Math. Anal. Appl., 399 (2013), 586. doi: 10.1016/j.jmaa.2012.09.054. Google Scholar [70] K. Erickson and A. Michel, Stability analysis of fixed-point digital filters using computer generated Lyapunov functions - Part I: Direct form and coupled form filtes,, IEEE Trans. Circuits and Systems, 32 (1985), 113. doi: 10.1109/TCS.1985.1085676. Google Scholar [71] K. Erickson and A. Michel, Stability analysis of fixed-point digital filters using computer generated Lyapunov functions - Part II: Wave digital filters and lattice digital filters,, IEEE Trans. Circuits and Systems, 32 (1985), 132. doi: 10.1109/TCS.1985.1085677. Google Scholar [72] M. Falcone, Numerical solution of dynamic programming equations,, in Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, (1997). Google Scholar [73] F. Fallside, M. Patel, M. Etherton, S. Margolis and W. Vogt, Control engineering applications of V. I. Zubov's construction procedure for Lyapunov functions,, IEEE Trans. Automat. Control, 10 (1965), 220. doi: 10.1109/TAC.1965.1098103. Google Scholar [74] F. Faria, G. Silva and V. Oliveira, Reducing the conservatism of LMI-based stabilisation conditions for TS fuzzy systems using fuzzy Lyapunov functions,, International Journal of Systems Science, 44 (2013), 1956. doi: 10.1080/00207721.2012.670307. Google Scholar [75] D. R. Ferguson, Generalisation of Zubov's construction procedure for Lyapunov functions,, Electron. Lett., 6 (1970), 73. doi: 10.1049/el:19700046. Google Scholar [76] A. Filippov, Differential Equations with Discontinuous Right-hand Side,, Translated from Russian, (1985). Google Scholar [77] H. Flashner and R. Guttalu, A computational approach for studying domains of attraction for nonlinear systems,, Internat. J. Non-Linear Mech., 23 (1988), 279. doi: 10.1016/0020-7462(88)90026-1. Google Scholar [78] F. Forni and R. Sepulchre, A differential Lyapunov framework for Contraction Analysis,, IEEE Trans. Automat. Control, 59 (2014), 614. doi: 10.1109/TAC.2013.2285771. Google Scholar [79] K. Forsman, Construction of Lyapunov functions using Grobner bases,, In Proceedings of the 30th IEEE Conference on Decision and Control, 1 (1991), 798. doi: 10.1109/CDC.1991.261424. Google Scholar [80] R. Geiselhart, R. Gielen, M. Lazar and F. Wirth, An alternative converse Lyapunov theorem for discrete-time systems,, Systems Control Lett., 70 (2014), 49. doi: 10.1016/j.sysconle.2014.05.007. Google Scholar [81] R. Genesio, M. Tartaglia and A. Vicino, On the estimation of asymptotic stability regions: State of the art and new proposals,, IEEE Trans. Automat. Control, 30 (1985), 747. doi: 10.1109/TAC.1985.1104057. Google Scholar [82] P. Giesl, Necessary conditions for a limit cycle and its basin of attraction,, Nonlinear Anal., 56 (2004), 643. doi: 10.1016/j.na.2003.07.020. Google Scholar [83] P. Giesl, The basin of attraction of periodic orbits in nonsmooth differential equations,, ZAMM Z. Angew. Math. Mech., 85 (2005), 89. doi: 10.1002/zamm.200310164. Google Scholar [84] P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions,, Lecture Notes in Math., (1904). Google Scholar [85] P. Giesl, On the determination of the basin of attraction of discrete dynamical systems,, J. Difference Equ. Appl., 13 (2007), 523. doi: 10.1080/10236190601135209. Google Scholar [86] P. Giesl, Construction of a local and global Lyapunov function using radial basis functions,, IMA J. Appl. Math., 73 (2008), 782. doi: 10.1093/imamat/hxn018. Google Scholar [87] P. Giesl, On the determination of the basin of attraction of periodic orbits in three- and higher-dimensional systems,, J. Math. Anal. Appl., 354 (2009), 606. doi: 10.1016/j.jmaa.2009.01.027. Google Scholar [88] P. Giesl, Construction of a finite-time Lyapunov function by meshless collocation,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2387. doi: 10.3934/dcdsb.2012.17.2387. Google Scholar [89] P. Giesl, Converse theorems on contraction metrics for an equilibrium,, J. Math. Anal. Appl., 424 (2015), 1380. doi: 10.1016/j.jmaa.2014.12.010. Google Scholar [90] P. Giesl and S. Hafstein, Existence of piecewise affine Lyapunov functions in two dimensions,, J. Math. Anal. Appl., 371 (2010), 233. doi: 10.1016/j.jmaa.2010.05.009. Google Scholar [91] P. Giesl and S. Hafstein, Existence of piecewise linear Lyapunov functions in arbitrary dimensions,, Discrete Contin. Dyn. Syst., 32 (2012), 3539. doi: 10.3934/dcds.2012.32.3539. Google Scholar [92] P. Giesl and S. Hafstein, Construction of a CPA contraction metric for periodic orbits using semidefinite optimization,, Nonlinear Anal., 86 (2013), 114. doi: 10.1016/j.na.2013.03.012. Google Scholar [93] P. Giesl and S. Hafstein, Computation of Lyapunov functions for nonlinear discrete time systems by linear programming,, J. Difference Equ. Appl., 20 (2014), 610. doi: 10.1080/10236198.2013.867341. Google Scholar [94] P. Giesl and S. Hafstein, Revised CPA method to compute Lyapunov functions for nonlinear systems,, J. Math. Anal. Appl., 410 (2014), 292. doi: 10.1016/j.jmaa.2013.08.014. Google Scholar [95] P. Giesl and M. Rasmussen, Areas of attraction for nonautonomous differential equations on finite time intervals,, J. Math. Anal. Appl., 390 (2012), 27. doi: 10.1016/j.jmaa.2011.12.051. Google Scholar [96] P. Giesl and H. Wendland, Meshless collocation: Error estimates with application to dynamical systems,, SIAM J. Numer. Anal., 45 (2007), 1723. doi: 10.1137/060658813. Google Scholar [97] P. Giesl and H. Wendland, Approximating the basin of attraction of time-periodic {ODE}s by meshless collocation,, Discrete Contin. Dyn. Syst., 25 (2009), 1249. doi: 10.3934/dcds.2009.25.1249. Google Scholar [98] P. Giesl and H. Wendland, Numerical determination of the basin of attraction for asymptotically autonomous dynamical systems,, Nonlinear Anal., 75 (2012), 2823. doi: 10.1016/j.na.2011.11.027. Google Scholar [99] R. Goebel, R. Sanfelice and A. Teel, Hybrid Dynamical Systems,, Modeling, (2012). Google Scholar [100] R. Goebel, A. Teel, T. Hu and Z. Lin, Conjugate convex Lyapunov functions for dual linear differential inclusions,, IEEE Trans. Automat. Control, 51 (2006), 661. doi: 10.1109/TAC.2006.872764. Google Scholar [101] A. Goullet, S. Harker, K. Mischaikow, W. Kalies and D. Kasti, Efficient computation of Lyapunov functions for Morse decompositions,, Discrete Contin. Dyn. Syst. Ser. B, 8 (2015), 2419. doi: 10.3934/dcdsb.2015.20.2419. Google Scholar [102] B. Grosman and D. Lewin, Lyapunov-based stability analysis automated by genetic programming,, Automatica, 45 (2009), 252. doi: 10.1016/j.automatica.2008.07.014. Google Scholar [103] L. Grujić, Exact determination of a Lyapunov function and the asymptotic stability domain,, Internat. J. Systems Sci., 23 (1992), 1871. doi: 10.1080/00207729208949427. Google Scholar [104] L. Grujić, Complete exact solution to the Lyapunov stability problem: Time-varying nonlinear systems with differentiable motions,, Nonlinear Anal., 22 (1994), 971. doi: 10.1016/0362-546X(94)90060-4. Google Scholar [105] L. Grüne, Asymptotic Behavior of Dynamical and Control Systems Under Perturbation and Discretization,, Lecture Notes in Mathematics, (1783). doi: 10.1007/b83677. Google Scholar [106] L. Grüne, P. Kloeden, S. Siegmund and F. Wirth, Lyapunov's second method for nonautonomous differential equations,, Discrete Contin. Dyn. Syst., 18 (2007), 375. doi: 10.3934/dcds.2007.18.375. Google Scholar [107] O. $\ddot G$urel and L. Lapidus, A guide to the generation of Liapunov functions,, Indust. Engrg. Chem., 61 (1969), 30. doi: 10.1021/ie50711a006. Google Scholar [108] S. Hafstein, A constructive converse Lyapunov theorem on exponential stability,, Discrete Contin. Dyn. Syst., 10 (2004), 657. doi: 10.3934/dcds.2004.10.657. Google Scholar [109] S. Hafstein, A constructive converse Lyapunov theorem on asymptotic stability for nonlinear autonomous ordinary differential equations,, Dynamical Systems: An International Journal, 20 (2005), 281. doi: 10.1080/14689360500164873. Google Scholar [110] S. Hafstein, An Algorithm for Constructing Lyapunov Functions,, Electronic Journal of Differential Equations. Monograph, (2007). Google Scholar [111] S. Hafstein, C. Kellett and H. Li, Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction,, in Proceedings of the 2014 American Control Conference (no. 0170), (2014), 548. doi: 10.1109/ACC.2014.6858660. Google Scholar [112] W. Hahn, Stability of Motion,, Springer, (1967). Google Scholar [113] G. Haller, Finding finite-time invariant manifolds in two-dimensional velocity fields,, Chaos, 10 (2000), 99. doi: 10.1063/1.166479. Google Scholar [114] B. Hargrave, Using Genetic Algorithms to Optimize Control Lyapunov Functions,, PhD thesis, (2008). Google Scholar [115] P. Hartman, Ordinary Differential Equations,, Wiley, (1964). Google Scholar [116] P. Hartman and C. Olech, On global asymptotic stability of solutions of differential equations,, Trans. Amer. Math. Soc., 104 (1962), 154. Google Scholar [117] M. Abu Hassan and C. Storey, Numerical determination of domains of attraction for electrical power systems using the method of Zubov,, Int. J. Control, 34 (1981), 371. doi: 10.1080/00207178108922536. Google Scholar [118] C. Hsu, Cell-to-cell Mapping,, Applied Mathematical Sciences, (1987). doi: 10.1007/978-1-4757-3892-6. Google Scholar [119] T. Hu and Z. Lin, Composite quadratic Lyapunov functions for constrained control systems,, IEEE Trans. Automat. Control, 48 (2003), 440. doi: 10.1109/TAC.2003.809149. Google Scholar [120] M. Hurley, Lyapunov functions and attractors in arbitrary metric spaces,, Proc. Amer. Math. Soc., 126 (1998), 245. doi: 10.1090/S0002-9939-98-04500-6. Google Scholar [121] B. Ingalls, E. Sontag and Y. Wang, An infinite-time relaxation theorem for differential inclusions,, Proc. Amer. Math. Soc., 131 (2003), 487. doi: 10.1090/S0002-9939-02-06539-5. Google Scholar [122] T. Johansen, Computation of Lyapunov functions for smooth, nonlinear systems using convex optimization,, Automatica, 36 (2000), 1617. doi: 10.1016/S0005-1098(00)00088-1. Google Scholar [123] M. Johansson, Piecewise Linear Control Systems,, Lecture Notes in Control and Information Sciences, (2003). doi: 10.1007/3-540-36801-9. Google Scholar [124] M. Johansson and A. Rantzer, Computation of piecewise quadratic Lyapunov functions for hybrid systems,, IEEE Trans. Automat. Control, 43 (1998), 555. doi: 10.1109/9.664157. Google Scholar [125] P. Julian, A High Level Canonical Piecewise Linear Representation: Theory and Applications,, PhD thesis, (1999). Google Scholar [126] P. Julian, J. Guivant and A. Desages, A parametrization of piecewise linear Lyapunov functions via linear programming,, Int. J. Control, 72 (1999), 702. doi: 10.1080/002071799220876. Google Scholar [127] O. Junge, Rigorous discretization of subdivision techniques,, in International Conference on Differential Equations, (1999), 916. Google Scholar [128] W. Kalies, K. Mischaikow and R. VanderVorst, An algorithmic approach to chain recurrence,, Found. Comput. Math, 5 (2005), 409. doi: 10.1007/s10208-004-0163-9. Google Scholar [129] R. Kamyar and M. Peet, Polynomial optimization with applications to stability analysis and control - Alternatives to sum of squares,, Discrete Contin. Dyn. Syst. Ser. B, (): 2383. doi: 10.3934/dcdsb.2015.20.2383. Google Scholar [130] J. Kapinski, J. Deshmukh, S. Sankaranarayanan and N. Arechiga, Simulation-guided Lyapunov analysis for hybrid dynamical systems,, in Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control (HSCC 2014), (2014), 133. doi: 10.1145/2562059.2562139. Google Scholar [131] C. Kellett, A compendium of comparison function results,, Math. Control Signals Syst., 26 (2014), 339. doi: 10.1007/s00498-014-0128-8. Google Scholar [132] C. Kellett, Classical converse theorems in Lyapunov's second method,, Discrete Contin. Dyn. Syst. Ser. B, 8 (2015), 2333. doi: 10.3934/dcdsb.2015.20.2333. Google Scholar [133] H. Khalil, Nonlinear Systems,, Macmillan Publishing Company, (1992). Google Scholar [134] V. Kharitonov, Time-delay Systems: Lyapunov Functionals and Matrices,, Control Engineering. Birkhäuser/Springer, (2013). doi: 10.1007/978-0-8176-8367-2. Google Scholar [135] R. Khasminskii, Stochastic Stability of Differential Equations,, Springer, (2012). doi: 10.1007/978-3-642-23280-0. Google Scholar [136] E. Kinnen and C. Chen, Liapunov functions derived from auxiliary exact differential equations,, Automatica, 4 (1968), 195. doi: 10.1016/0005-1098(68)90014-9. Google Scholar [137] P. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Amer. Mathematical Society, (2011). doi: 10.1090/surv/176. Google Scholar [138] P. Koltai, A stochastic approach for computing the domain of attraction without trajectory simulation,, in Dynamical Systems, (2011), 854. Google Scholar [139] N. Krasovskiĭ, Problems of the Theory of Stability of Motion,, English translation by Stanford University Press, (1963). Google Scholar [140] A. Kravchuk, G. Leonov and D. Ponomarenko, A criterion for the strong orbital stability of the trajectories of dynamical systems I,, Diff. Uravn., 28 (1992), 1507. Google Scholar [141] V. Lakshmikantham, V. Matrosov and S. Sivasundaram, Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems,, Mathematics and its Applications, (1991). doi: 10.1007/978-94-015-7939-1. Google Scholar [142] M. Lazar, On infinity norms as Lyapunov functions: Alternative necessary and sufficient conditions,, in Proceedings of the 49th IEEE Conference on Decision and Control, (2010), 5936. doi: 10.1109/CDC.2010.5717266. Google Scholar [143] M. Lazar and A. Doban, On infinity norms as Lyapunov functions for continuous-time dynamical systems,, in Proceedings of the 50th IEEE Conference on Decision and Control, (2011), 7567. doi: 10.1109/CDC.2011.6161163. Google Scholar [144] M. Lazar, A. Doban and N. Athanasopoulos, On stability analysis of discrete-time homogeneous dynamics,, in Proceedings of the 17th International Conference on Systems Theory, (2013), 297. doi: 10.1109/ICSTCC.2013.6688976. Google Scholar [145] M. Lazar and A. Jokić, On infinity norms as Lyapunov functions for piecewise affine systems,, in HSCC'10, (2010), 131. doi: 10.1145/1755952.1755972. Google Scholar [146] G. Leonov, I. Burkin and A. Shepelyavyi, Frequency Methods in Oscillation Theory,, Mathematics and its Applications, (1996). doi: 10.1007/978-94-009-0193-3. Google Scholar [147] D. Lewis, Metric properties of differential equations,, Amer. J. Math., 71 (1949), 294. doi: 10.2307/2372245. Google Scholar [148] H. Li, R. Baier, L. Grüne, S. Hafstein and F. Wirth, Computation of local ISS Lyapunov functions via linear programming,, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS) (no. 0158), (0158), 1189. Google Scholar [149] H. Li, R. Baier, L. Grüne, S. Hafstein and F. Wirth, Computation of local ISS Lyapunov functions with low gains via linear programming,, Discrete Contin. Dyn. Syst. Ser. B, 8 (2015), 2477. doi: 10.3934/dcdsb.2015.20.2477. Google Scholar [150] H. Li, S. Hafstein and C. Kellett, Computation of Lyapunov functions for discrete-time systems using the Yoshizawa construction,, in Proceedings of the 53rd IEEE Conference on Decision and Control - CDC 2014, (2014), 5512. doi: 10.1109/CDC.2014.7040251. Google Scholar [151] D. Liberzon, Switching in Systems and Control,, Systems & Control: Foundations & Applications, (2003). doi: 10.1007/978-1-4612-0017-8. Google Scholar [152] Y. Lin, E. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability,, SIAM J. Control Optimization, 34 (1996), 124. doi: 10.1137/S0363012993259981. Google Scholar [153] Z. Liu, The random case of Conley's theorem,, Nonlinearity, 19 (2006), 277. doi: 10.1088/0951-7715/19/2/002. Google Scholar [154] Z. Liu, The random case of Conley's theorem. II. The complete Lyapunov function,, Nonlinearity, 20 (2007), 1017. doi: 10.1088/0951-7715/20/4/012. Google Scholar [155] Z. Liu, The random case of Conley's theorem. III. Random semiflow case and Morse decomposition,, Nonlinearity, 20 (2007), 2773. doi: 10.1088/0951-7715/20/12/003. Google Scholar [156] W. Lohmiller and J.-J. Slotine, On Contraction Analysis for Non-linear Systems,, Automatica, 34 (1998), 683. doi: 10.1016/S0005-1098(98)00019-3. Google Scholar [157] K. Loparo and G. Blankenship, Estimating the domain of attraction of nonlinear feedback systems,, IEEE Trans. Automat. Control, 23 (1978), 602. Google Scholar [158] A. Lyapunov, The general problem of the stability of motion,, Internat. J. Control, 55 (1992), 521. doi: 10.1080/00207179208934253. Google Scholar [159] M. Malisoff and F. Mazenc, Constructions of Strict Lyapunov Functions,, Communications and Control Engineering, (2009). doi: 10.1007/978-1-84882-535-2. Google Scholar [160] I. Manchester and J.-J. Slotine, Transverse contraction criteria for existence, stability, and robustness of a limit cycle,, Systems Control Lett., 63 (2014), 32. doi: 10.1016/j.sysconle.2013.10.005. Google Scholar [161] X. Mao, Stochastic Differential Equations and Applications,, 2nd edition, (2008). doi: 10.1533/9780857099402. Google Scholar [162] S. Margolis and W. Vogt, Control engineering applications of V. I. Zubov's construction procedure for Lyapunov functions,, IEEE Trans. Automat. Control, 8 (1963), 104. doi: 10.1109/TAC.1963.1105553. Google Scholar [163] S. Marinósson, Lyapunov function construction for ordinary differential equations with linear programming,, Dynamical Systems: An International Journal, 17 (2002), 137. doi: 10.1080/0268111011011847. Google Scholar [164] S. Marinósson, Stability Analysis of Nonlinear Systems with Linear Programming: A Lyapunov Functions Based Approach,, PhD thesis, (2002). Google Scholar [165] A. Martynyuk, Analysis of stability problems via Matrix Lyapunov Functions,, J. Appl. Math. Stochastic Anal., 3 (1990), 209. doi: 10.1155/S104895339000020X. Google Scholar [166] J. Massera, On Liapounoff's conditions of stability,, Ann. of Math., 50 (1949), 705. doi: 10.2307/1969558. Google Scholar [167] J. Massera, Contributions to stability theory,, Ann. of Math., 64 (1956), 182. doi: 10.2307/1969955. Google Scholar [168] V. Matrosov, On the stability of motion,, J. Appl. Math. Mech., 26 (1963), 1337. Google Scholar [169] P. Menck, J. Heitzig, N. Marwan and K. Kurths, How basin stability complements the linear-stability paradigm,, Nature Physics, 9 (2013), 89. doi: 10.1038/nphys2516. Google Scholar [170] S. Meyn and R. Tweedie, Markov Chains and Stochastic Stability,, 2nd edition, (2009). doi: 10.1017/CBO9780511626630. Google Scholar [171] A. Michel, L. Hou and D. Liu, Stability of Dynamical Systems: Continuous, Discontinuous, and Discrete Systems,, Systems & Control: Foundations & Applications, (2008). Google Scholar [172] A. Michel, R. Miller and B. Nam, Stability analysis of interconnected systems using computer generated Lyapunov functions,, IEEE Trans. Circuits and Systems, 29 (1982), 431. doi: 10.1109/TCS.1982.1085181. Google Scholar [173] A. Michel, B. Nam and V. Vittal, Computer generated Lyapunov functions for interconnected systems: Improved results with applications to power system,, IEEE Trans. Circuits and Systems, 31 (1984), 189. doi: 10.1109/TCS.1984.1085483. Google Scholar [174] A. Michel, N. Sarabudla and R. Miller, Stability analysis of complex dynamical systems,, Circuits Systems Signal Process, 1 (1982), 171. doi: 10.1007/BF01600051. Google Scholar [175] C. Mikkelsen, Numerical Methods For Large Lyapunov Equations,, PhD thesis, (2009). Google Scholar [176] N. Mohammed and P. Giesl, Grid refinement in the construction of Lyapunov functions using radial basis functions,, Discrete Contin. Dyn. Syst. Ser. B, 8 (2015), 2453. doi: 10.3934/dcdsb.2015.20.2453. Google Scholar [177] A. Molchanov and E. Pyatnitskiiĭ, Criteria of asymptotic stability of differential and difference inclusions encountered in control theory,, Systems Control Lett., 13 (1989), 59. doi: 10.1016/0167-6911(89)90021-2. Google Scholar [178] A. Molchanov and E. Pyatnitskiĭ, Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems I, II,, Automat. Remote Control, 47 (1986), 344. Google Scholar [179] N. Noroozi, P. Karimaghaee, F. Safaei and H. Javadi, Generation of Lyapunov functions by neural networks,, in Proceedings of the World Congress on Engineering 2008, (2008). Google Scholar [180] D. Norton, The fundamental theorem of dynamical systems,, Comment. Math. Univ. Carolinae, 36 (1995), 585. Google Scholar [181] Y. Ohta, On the construction of piecewise linear Lyapunov functions,, in Proceedings of the 40th IEEE Conference on Decision and Control, 3 (2001), 2173. doi: 10.1109/CDC.2001.980577. Google Scholar [182] Y. Ohta and M. Tsuji, A generalization of piecewise linear Lyapunov functions,, in Proceedings of the 42nd IEEE Conference on Decision and Control, 5 (2003), 5091. doi: 10.1109/CDC.2003.1272443. Google Scholar [183] R. O'Shea, The extension of Zubov's method to sampled data control systems described by nonlinear autonomous difference equations,, IEEE Trans. Automat. Control, 9 (1964), 62. Google Scholar [184] S. Panikhom and S. Sujitjorn, Numerical approach to construction of Lyapunov function for nonlinear stability analysis,, Research Journal of Applied Sciences, 4 (2012), 2915. Google Scholar [185] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Pranja, P. Seiler and P. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB,, User's Guide, (2013). Google Scholar [186] P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimiziation,, PhD thesis, (2000). Google Scholar [187] M. Patrão, Existence of complete Lyapunov functions for semiflows on separable metric spaces,, Far East J. Dyn. Syst., 17 (2011), 49. Google Scholar [188] M. Peet, Exponentially stable nonlinear systems have polynomial Lyapunov functions on bounded regions,, IEEE Trans. Automat. Control, 54 (2009), 979. doi: 10.1109/TAC.2009.2017116. Google Scholar [189] M. Peet and A. Papachristodoulou, A converse sum of squares Lyapunov result with a degree bound,, IEEE Trans. Automat. Control, 57 (2012), 2281. doi: 10.1109/TAC.2012.2190163. Google Scholar [190] S. Pettersson and B. Lennartson, Stability and robustness for hybrid systems,, in Proceedings of the 35th IEEE Conference on Decision and Control, (1996), 1202. doi: 10.1109/CDC.1996.572653. Google Scholar [191] A. Polanski, Lyapunov functions construction by linear programming,, IEEE Trans. Automat. Control, 42 (1997), 1113. doi: 10.1109/9.599986. Google Scholar [192] A. Polanski, On absolute stability analysis by polyhedral Lyapunov functions,, Automatica, 36 (2000), 573. doi: 10.1016/S0005-1098(99)00180-6. Google Scholar [193] I. Pólik and T. Terlaky, A survey of the S-lemma,, SIAM Review, 49 (2007), 371. doi: 10.1137/S003614450444614X. Google Scholar [194] C. Prieur and F. Mazenc, ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws,, Math. Control Signals Syst., 24 (2012), 111. doi: 10.1007/s00498-012-0074-2. Google Scholar [195] D. Prokhorov, A Lyapunov machine for stability analysis of nonlinear systems,, in Proceedings of the IEEE International Conference on Neural Networks, (1994), 1028. doi: 10.1109/ICNN.1994.374324. Google Scholar [196] S. Raković and M. Lazar, The Minkowski-Lyapunov equation for linear dynamics: Theoretical foundations,, Automatica, 50 (2014), 2015. doi: 10.1016/j.automatica.2014.05.023. Google Scholar [197] M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems,, Lecture Notes in Mathematics, (1907). Google Scholar [198] M. Rasmussen, Morse decompositions of nonautonomous dynamical systems,, Trans. Amer. Math. Soc., 359 (2007), 5091. doi: 10.1090/S0002-9947-07-04318-8. Google Scholar [199] S. Ratschan and Z. She, Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions,, SIAM J. Control Optim., 48 (2010), 4377. doi: 10.1137/090749955. Google Scholar [200] M. Rezaiee-Pajand and B. Moghaddasie, Estimating the region of attraction via collocation for autonomous nonlinear systems,, Structural Engineering and Mechanics, 41 (2012), 263. Google Scholar [201] M. Roozbehani, S. Megretski and E. Feron, Optimization of Lyapunov invariants in verification of software systems,, IEEE Trans. Automat. Control, 58 (2013), 696. doi: 10.1109/TAC.2013.2241472. Google Scholar [202] B. Rüffer, N. van de Wouw and M. Mueller, Convergent systems vs. incremental stability,, Systems Control Lett., 62 (2013), 277. doi: 10.1016/j.sysconle.2012.11.015. Google Scholar [203] G. Serpen, Empirical approximation for Lyapunov functions with artificial neural nets,, in Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, (2005), 735. doi: 10.1109/IJCNN.2005.1555943. Google Scholar [204] Z. She, H. Li, B. Xue, Z. Zheng and B. Xia, Discovering polynomial Lyapunov functions for continuous dynamical systems,, J. Symbolic Comput., 58 (2013), 41. doi: 10.1016/j.jsc.2013.06.003. Google Scholar [205] Z. She and B. Xue, Computing an invariance kernel with target by computing Lyapunov-like functions,, IET Control Theory Appl., 7 (2013), 1932. doi: 10.1049/iet-cta.2013.0275. Google Scholar [206] R. Shorten, F. Wirth, O. Mason, K. Wulff and C. King, Stability criteria for switched and hybrid systems,, SIAM Review, 49 (2007), 545. doi: 10.1137/05063516X. Google Scholar [207] D. Šiljak, Large-scale Dynamic Systems. Stability and Structure,, North-Holland Series in System Science and Engineering, (1979). Google Scholar [208] E. Sontag, A Lyapunov-like characterization of asymptotic controllability,, SIAM J. Control Optimization, 21 (1983), 462. doi: 10.1137/0321028. Google Scholar [209] E. Sontag, Smooth stabilization implies coprime factorization,, IEEE Trans. Automat. Control, 34 (1989), 435. doi: 10.1109/9.28018. Google Scholar [210] E. Sontag, New characterizations of input-to-state stability,, IEEE Trans. Automat. Control, 41 (1996), 1283. doi: 10.1109/9.536498. Google Scholar [211] E. Sontag, Mathematical Control Theory,, 2nd edition, (1998). doi: 10.1007/978-1-4612-0577-7. Google Scholar [212] E. Sontag and H. Sussman, Nonsmooth control-Lyapunov functions,, in Proceedings of the 34th IEEE Conference on Decision and Control, (1995), 2799. doi: 10.1109/CDC.1995.478542. Google Scholar [213] E. Sontag and Y. Wang, On characterizations of the input-to-state stability property,, Systems Control Lett., 24 (1995), 351. doi: 10.1016/0167-6911(94)00050-6. Google Scholar [214] B. Stenström, Dynamical systems with a certain local contraction property,, Math. Scand., 11 (1962), 151. Google Scholar [215] A. Subbaraman and A. Teel, A converse Lyapunov theorem for strong global recurrence,, Automatica, 49 (2013), 2963. doi: 10.1016/j.automatica.2013.07.001. Google Scholar [216] A. Subbaraman and A. Teel, A Matrosov theorem for strong global recurrence,, Automatica, 49 (2013), 3390. doi: 10.1016/j.automatica.2013.08.009. Google Scholar [217] Z. Sun, Stability of piecewise linear systems revisited,, Annu. Rev. Control, 34 (2010), 221. doi: 10.1016/j.arcontrol.2010.08.003. Google Scholar [218] Z. Sun and S. Ge, Stability Theory of Switched Dynamical Systems,, Communications and Control Engineering, (2011). doi: 10.1007/978-0-85729-256-8. Google Scholar [219] K. Tanaka, T. Hori and H. Wang, A multiple Lyapunov function approach to stabilization of fuzzy control systems,, IEEE T. Fuzzy Syst., 11 (2003), 582. doi: 10.1109/TFUZZ.2003.814861. Google Scholar [220] A. R. Teel and L. Praly, A smooth Lyapunov function from a class-KL estimate involving two positive semidefinite functions,, ESAIM Control Optim. Calc. Var., 5 (2000), 313. doi: 10.1051/cocv:2000113. Google Scholar [221] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences, (1997). doi: 10.1007/978-1-4612-0645-3. Google Scholar [222] A. Tesi, F. Villoresi and R. Genesio, On stability domain estimation via a quadratic Lyapunov function: Convexity and optimality properties for polynomial systems,, in Proceedings of the 33rd Conference on Decision and Control, (1994), 1907. doi: 10.1109/CDC.1994.411100. Google Scholar [223] A. Vannelli and M. Vidyasagar, Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems,, Automatica, 21 (1985), 69. doi: 10.1016/0005-1098(85)90099-8. Google Scholar [224] K. Wang and A. Michel, On the stability of a family of nonlinear time-varying system,, IEEE Trans. Circuits and Systems, 43 (1996), 517. doi: 10.1109/81.508171. Google Scholar [225] H. Wendland, Scattered Data Approximation,, Cambridge Monographs on Applied and Computational Mathematics, (2005). Google Scholar [226] C. Xu and G. Sallet, Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems,, ESAIM Control Optim. Calc. Var., 7 (2002), 421. doi: 10.1051/cocv:2002062. Google Scholar [227] C. Yfoulis and R. Shorten, A numerical technique for the stability analysis of linear switched systems,, Int. J. Control, 77 (2004), 1019. doi: 10.1080/002071704200026963. Google Scholar [228] T. Yoshizawa, Stability Theory by Liapunov's Second Method,, Publications of the Mathematical Society of Japan, (1966). Google Scholar [229] V. Zubov, Methods of A. M. Lyapunov and Their Application,, Translation prepared under the auspices of the United States Atomic Energy Commission; edited by Leo F. Boron, (1964). Google Scholar

show all references

##### References:
 [1] N. Aghannan and P. Rouchon, An intrinsic observer for a class of Lagrangian systems,, IEEE Trans. Automat. Control, 48 (2003), 936. doi: 10.1109/TAC.2003.812778. Google Scholar [2] A. Agrachev and D. Liberzon, Lie-algebraic stability criteria for switched systems,, SIAM J. Control Optim., 40 (2001), 253. doi: 10.1137/S0363012999365704. Google Scholar [3] A. Ahmadi and R. Jungers, On complexity of Lyapunov functions for switched linear systems,, in Proceedings of the 19th World Congress of the International Federation of Automatic Control, (2014). Google Scholar [4] A. Ahmadi, K. Krstic and P. Parrilo, A globally asymptotically stable polynomial vector field with no polynomial Lyapunov function,, in Proceedings of the 50th IEEE Conference on Decision and Control (CDC), (2011), 7579. doi: 10.1109/CDC.2011.6161499. Google Scholar [5] A. Ahmadi, A. Majumdar and R. Tedrake, Complexity of ten decision problems in continuous time dynamical systems,, in Proceedings of the American Control Conference, (2013), 6376. doi: 10.1109/ACC.2013.6580838. Google Scholar [6] E. Akin, The General Topology of Dynamical Systems,, American Mathematical Society, (1993). Google Scholar [7] A. Aleksandrov, A. Martynyuk and A. Zhabko, Professor V. I. Zubov to the 80th birthday anniversary,, Nonlinear Dyn. Syst. Theory, 10 (2010), 1. Google Scholar [8] R. Ambrosino and E. Garone, Robust stability of linear uncertain systems through piecewise quadratic Lyapunov functions defined over conical partitions,, in Proceedings of the 51st IEEE Conference on Decision and Control, (2012), 2872. doi: 10.1109/CDC.2012.6427016. Google Scholar [9] J. Anderson and A. Papachristodoulou, Advances in computational Lyapunov analysis using sum-of-squares programming,, Discrete Contin. Dyn. Syst. Ser. B, 8 (2015), 2361. doi: 10.3934/dcdsb.2015.20.2361. Google Scholar [10] D. Angeli, A Lyapunov approach to incremental stability properties,, IEEE Trans. Automat. Contr., 47 (2002), 410. doi: 10.1109/9.989067. Google Scholar [11] E. Aragão-Costa, T. Caraballo, A. Carvalho and J. Langa, Stability of gradient semigroups under perturbations,, Nonlinearity, 24 (2011), 2099. doi: 10.1088/0951-7715/24/7/010. Google Scholar [12] E. Aragão-Costa, T. Caraballo, A. Carvalho and J. Langa, Non-autonomous Morse-decomposition and Lyapunov functions for gradient-like processes,, Trans. Amer. Math. Soc., 365 (2013), 5277. doi: 10.1090/S0002-9947-2013-05810-2. Google Scholar [13] L. Arnold, Stochastic Differential Equations: Theory and Applications,, Wiley, (1974). Google Scholar [14] L. Arnold, Random dynamical systems,, in Dynamical Systems (Montecatini Terme, (1994), 1. doi: 10.1007/BFb0095238. Google Scholar [15] L. Arnold and B. Schmalfuss, Lyapunov's second method for random dynamical systems,, J. Differential Equations, 177 (2001), 235. doi: 10.1006/jdeq.2000.3991. Google Scholar [16] J.-P. Aubin and A. Cellina, Differential Inclusions,, Springer, (1984). doi: 10.1007/978-3-642-69512-4. Google Scholar [17] B. Aulbach, Asymptotic stability regions via extensions of Zubov's method. I, II,, Nonlinear Anal., 7 (1983), 1431. doi: 10.1016/0362-546X(83)90010-X. Google Scholar [18] E. Aylward, P. Parrilo and J.-J. Slotine, Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming,, Automatica, 44 (2008), 2163. doi: 10.1016/j.automatica.2007.12.012. Google Scholar [19] R. Baier, L. Grüne and S. Hafstein, Linear programming based Lyapunov function computation for differential inclusions,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 33. doi: 10.3934/dcdsb.2012.17.33. Google Scholar [20] R. Baier and S. Hafstein, Numerical computation of Control Lyapunov Functions in the sense of generalized gradients,, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS) (no. 0232), (0232), 1173. Google Scholar [21] H. Ban and W. Kalies, A computational approach to Conley's decomposition theorem,, J. Comput. Nonlinear Dynam., 1 (2006), 312. doi: 10.1115/1.2338651. Google Scholar [22] E. Barbašin and N. Krasovskiĭ, On the existence of Lyapunov functions in the case of asymptotic stability in the large,, Prikl. Mat. Meh., 18 (1954), 345. Google Scholar [23] R. Bartels and G. Stewart, Solution of the matrix equation AX+XB=C,, Communications of the ACM, 15 (1972), 820. doi: 10.1145/361573.361582. Google Scholar [24] R. Bellman, Vector Lyapunov functions,, J. SIAM Control Ser. A, 1 (1962), 32. Google Scholar [25] R. Bellman, Introduction to Matrix Analysis,, Classics in Applied Mathematics, (1995). Google Scholar [26] A. Berger, On finite-time hyperbolicity,, Commun. Pure Appl. Anal., 10 (2011), 963. doi: 10.3934/cpaa.2011.10.963. Google Scholar [27] A. Berger, T. S. Doan and S. Siegmund, A definition of spectrum for differential equations on finite time,, J. Differential Equations, 246 (2009), 1098. doi: 10.1016/j.jde.2008.06.036. Google Scholar [28] J. Bernussou and P. Peres, A linear programming oriented procedure for quadratic stabilization of uncertain systems,, Systems Control Lett., 13 (1989), 65. doi: 10.1016/0167-6911(89)90022-4. Google Scholar [29] N. Bhatia and G. Szegő, Dynamical Systems: Stability Theory and Applications,, Lecture Notes in Mathematics, (1967). Google Scholar [30] G. Birkhoff, Dynamical Systems,, American Mathematical Society Colloquium Publications, (1966). Google Scholar [31] J. Björnsson, P. Giesl and S. Hafstein, Algorithmic verification of approximations to complete Lyapunov functions,, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (no. 0180), (0180), 1181. Google Scholar [32] J. Björnsson, P. Giesl, S. Hafstein, C. Kellett and H. Li, Computation of continuous and piecewise affine Lyapunov functions by numerical approximations of the Massera construction,, in Proceedings of the CDC, (2014), 5506. Google Scholar [33] J. Björnsson, P. Giesl, S. Hafstein, C. Kellett and H. Li, Computation of Lyapunov functions for systems with multiple attractors,, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 4019. doi: 10.3934/dcds.2015.35.4019. Google Scholar [34] F. Blanchini, Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions,, in Proceedings of the 30th IEEE Conference on Decision and Control, (1991), 1755. doi: 10.1109/CDC.1991.261708. Google Scholar [35] F. Blanchini, Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions,, IEEE Trans. Automat. Control, 39 (1994), 428. doi: 10.1109/9.272351. Google Scholar [36] F. Blanchini, Nonquadratic Lyapunov functions for robust control,, Automatica, 31 (1995), 451. doi: 10.1016/0005-1098(94)00133-4. Google Scholar [37] F. Blanchini and S. Carabelli, Robust stabilization via computer-generated Lyapunov functions: An application to a magnetic levitation system,, in Proceedings of the 33th IEEE Conference on Decision and Control, (1994), 1105. doi: 10.1109/CDC.1994.411291. Google Scholar [38] F. Blanchini and S. Miani, Set-theoretic Methods in Control,, Systems & Control: Foundations & Applications, (2008). Google Scholar [39] V. Boichenko, G. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations,, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], (2005). doi: 10.1007/978-3-322-80055-8. Google Scholar [40] G. Borg, A Condition for the Existence Of Orbitally Stable Solutions of Dynamical Systems,, Kungliga Tekniska Högskolan Handlingar Stockholm, (1960). Google Scholar [41] J. Bouvrie and B. Hamzi, Model reduction for nonlinear control systems using kernel subspace methods,, , (2011). Google Scholar [42] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, SIAM Studies in Applied Mathematics, (1994). doi: 10.1137/1.9781611970777. Google Scholar [43] S. Boyd and L. Vandenberghe, Convex Optimization,, Cambridge University Press, (2004). doi: 10.1017/CBO9780511804441. Google Scholar [44] M. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,, IEEE Trans. Automat. Control, 43 (1998), 475. doi: 10.1109/9.664150. Google Scholar [45] R. Brayton and C. Tong, Stability of dynamical systems: A constructive approach,, IEEE Trans. Circuits and Systems, 26 (1979), 224. doi: 10.1109/TCS.1979.1084637. Google Scholar [46] R. Brayton and C. Tong, Constructive stability and asymptotic stability of dynamical systems,, IEEE Trans. Circuits and Systems, 27 (1980), 1121. doi: 10.1109/TCS.1980.1084749. Google Scholar [47] M. Buhmann, Radial Basis Functions: Theory and Implementations,, Cambridge Monographs on Applied and Computational Mathematics, (2003). doi: 10.1017/CBO9780511543241. Google Scholar [48] H. Burchardt and S. Ratschan, Estimating the region of attraction of ordinary differential equations by quantified constraint solving,, in Proceedings Of The 3rd WSEAS International Conference On Dynamical Systems And Control, (2007), 241. Google Scholar [49] C. Byrnes, Topological methods for nonlinear oscillations,, Notices Amer. Math. Soc., 57 (2010), 1080. Google Scholar [50] F. Camilli, L. Grüne and F. Wirth, A generalization of Zubov's method to perturbed systems,, SIAM J. Control Optim., 40 (2001), 496. doi: 10.1137/S036301299936316X. Google Scholar [51] F. Camilli, L. Grüne and F. Wirth, A regularization of Zubov's equation for robust domains of attraction,, in Nonlinear Control in the Year 2000, (2000), 277. doi: 10.1007/BFb0110220. Google Scholar [52] F. Camilli, L. Grüne and F. Wirth, Control Lyapunov functions and Zubov's method,, SIAM J. Control Optim., 47 (2008), 301. doi: 10.1137/06065129X. Google Scholar [53] A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Applied Mathematical Sciences, (2013). doi: 10.1007/978-1-4614-4581-4. Google Scholar [54] C. Chen and E. Kinnen, Construction of Liapunov functions,, J. Franklin Inst., 289 (1970), 133. doi: 10.1016/0016-0032(70)90299-1. Google Scholar [55] G. Chesi, LMI techniques for optimization over polynomials in control: A survey,, IEEE Trans. Automat. Control, 55 (2010), 2500. doi: 10.1109/TAC.2010.2046926. Google Scholar [56] C. Chicone, Ordinary Differential Equations with Applications,, Texts in Applied Mathematics, (1999). Google Scholar [57] I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,, ACTA Scientific Publishing House, (2002). Google Scholar [58] F. Clarke, Lyapunov functions and discontinuous stabilizing feedback,, Annu. Rev. Control, 35 (2011), 13. doi: 10.1016/j.arcontrol.2011.03.001. Google Scholar [59] F. Clarke, Y. Ledyaev and R. Stern, Asymptotic stability and smooth Lyapunov functions,, J. Differential Equations, 149 (1998), 69. doi: 10.1006/jdeq.1998.3476. Google Scholar [60] C. Conley, Isolated Invariant Sets and the Morse Index,, CBMS Regional Conference Series, (1978). Google Scholar [61] J.-M. Coron, B. d'Andréa Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2. doi: 10.1109/TAC.2006.887903. Google Scholar [62] E. Davison and E. Kurak, A computational method for determining quadratic Lyapunov functions for non-linear systems,, Automatica, 7 (1971), 627. doi: 10.1016/0005-1098(71)90027-6. Google Scholar [63] G. Davrazos and N. Koussoulas, A review of stability results for switched and hybrid systems,, in Proceedings of 9th Mediterranean Conference on Control and Automation, (2001). Google Scholar [64] W. Dayawansa and C. Martin, A converse Lyapunov theorem for a class of dynamical systems which undergo switching,, IEEE Tra, 44 (1999), 751. doi: 10.1109/9.754812. Google Scholar [65] M. Dellnitz, G. Froyland and O. Junge, The algorithms behind {GAIO} - set oriented numerical methods for dynamical systems,, in Ergodic Theory, (2001), 145. Google Scholar [66] M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems,, in Handbook of Dynamical Systems, (2002), 221. doi: 10.1016/S1874-575X(02)80026-1. Google Scholar [67] U. Dini, Fondamenti per la Teoria Delle Funzioni di Variabili Reali,, (in Italian) Pisa, (1878). Google Scholar [68] S. Dubljević and N. Kazantzis, A new Lyapunov design approach for nonlinear systems based on Zubov's method,, Automatica, 38 (2002), 1999. doi: 10.1016/S0005-1098(02)00110-3. Google Scholar [69] N. Eghbal, N. Pariz and A. Karimpour, Discontinuous piecewise quadratic Lyapunov functions for planar piecewise affine systems,, J. Math. Anal. Appl., 399 (2013), 586. doi: 10.1016/j.jmaa.2012.09.054. Google Scholar [70] K. Erickson and A. Michel, Stability analysis of fixed-point digital filters using computer generated Lyapunov functions - Part I: Direct form and coupled form filtes,, IEEE Trans. Circuits and Systems, 32 (1985), 113. doi: 10.1109/TCS.1985.1085676. Google Scholar [71] K. Erickson and A. Michel, Stability analysis of fixed-point digital filters using computer generated Lyapunov functions - Part II: Wave digital filters and lattice digital filters,, IEEE Trans. Circuits and Systems, 32 (1985), 132. doi: 10.1109/TCS.1985.1085677. Google Scholar [72] M. Falcone, Numerical solution of dynamic programming equations,, in Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, (1997). Google Scholar [73] F. Fallside, M. Patel, M. Etherton, S. Margolis and W. Vogt, Control engineering applications of V. I. Zubov's construction procedure for Lyapunov functions,, IEEE Trans. Automat. Control, 10 (1965), 220. doi: 10.1109/TAC.1965.1098103. Google Scholar [74] F. Faria, G. Silva and V. Oliveira, Reducing the conservatism of LMI-based stabilisation conditions for TS fuzzy systems using fuzzy Lyapunov functions,, International Journal of Systems Science, 44 (2013), 1956. doi: 10.1080/00207721.2012.670307. Google Scholar [75] D. R. Ferguson, Generalisation of Zubov's construction procedure for Lyapunov functions,, Electron. Lett., 6 (1970), 73. doi: 10.1049/el:19700046. Google Scholar [76] A. Filippov, Differential Equations with Discontinuous Right-hand Side,, Translated from Russian, (1985). Google Scholar [77] H. Flashner and R. Guttalu, A computational approach for studying domains of attraction for nonlinear systems,, Internat. J. Non-Linear Mech., 23 (1988), 279. doi: 10.1016/0020-7462(88)90026-1. Google Scholar [78] F. Forni and R. Sepulchre, A differential Lyapunov framework for Contraction Analysis,, IEEE Trans. Automat. Control, 59 (2014), 614. doi: 10.1109/TAC.2013.2285771. Google Scholar [79] K. Forsman, Construction of Lyapunov functions using Grobner bases,, In Proceedings of the 30th IEEE Conference on Decision and Control, 1 (1991), 798. doi: 10.1109/CDC.1991.261424. Google Scholar [80] R. Geiselhart, R. Gielen, M. Lazar and F. Wirth, An alternative converse Lyapunov theorem for discrete-time systems,, Systems Control Lett., 70 (2014), 49. doi: 10.1016/j.sysconle.2014.05.007. Google Scholar [81] R. Genesio, M. Tartaglia and A. Vicino, On the estimation of asymptotic stability regions: State of the art and new proposals,, IEEE Trans. Automat. Control, 30 (1985), 747. doi: 10.1109/TAC.1985.1104057. Google Scholar [82] P. Giesl, Necessary conditions for a limit cycle and its basin of attraction,, Nonlinear Anal., 56 (2004), 643. doi: 10.1016/j.na.2003.07.020. Google Scholar [83] P. Giesl, The basin of attraction of periodic orbits in nonsmooth differential equations,, ZAMM Z. Angew. Math. Mech., 85 (2005), 89. doi: 10.1002/zamm.200310164. Google Scholar [84] P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions,, Lecture Notes in Math., (1904). Google Scholar [85] P. Giesl, On the determination of the basin of attraction of discrete dynamical systems,, J. Difference Equ. Appl., 13 (2007), 523. doi: 10.1080/10236190601135209. Google Scholar [86] P. Giesl, Construction of a local and global Lyapunov function using radial basis functions,, IMA J. Appl. Math., 73 (2008), 782. doi: 10.1093/imamat/hxn018. Google Scholar [87] P. Giesl, On the determination of the basin of attraction of periodic orbits in three- and higher-dimensional systems,, J. Math. Anal. Appl., 354 (2009), 606. doi: 10.1016/j.jmaa.2009.01.027. Google Scholar [88] P. Giesl, Construction of a finite-time Lyapunov function by meshless collocation,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2387. doi: 10.3934/dcdsb.2012.17.2387. Google Scholar [89] P. Giesl, Converse theorems on contraction metrics for an equilibrium,, J. Math. Anal. Appl., 424 (2015), 1380. doi: 10.1016/j.jmaa.2014.12.010. Google Scholar [90] P. Giesl and S. Hafstein, Existence of piecewise affine Lyapunov functions in two dimensions,, J. Math. Anal. Appl., 371 (2010), 233. doi: 10.1016/j.jmaa.2010.05.009. Google Scholar [91] P. Giesl and S. Hafstein, Existence of piecewise linear Lyapunov functions in arbitrary dimensions,, Discrete Contin. Dyn. Syst., 32 (2012), 3539. doi: 10.3934/dcds.2012.32.3539. Google Scholar [92] P. Giesl and S. Hafstein, Construction of a CPA contraction metric for periodic orbits using semidefinite optimization,, Nonlinear Anal., 86 (2013), 114. doi: 10.1016/j.na.2013.03.012. Google Scholar [93] P. Giesl and S. Hafstein, Computation of Lyapunov functions for nonlinear discrete time systems by linear programming,, J. Difference Equ. Appl., 20 (2014), 610. doi: 10.1080/10236198.2013.867341. Google Scholar [94] P. Giesl and S. Hafstein, Revised CPA method to compute Lyapunov functions for nonlinear systems,, J. Math. Anal. Appl., 410 (2014), 292. doi: 10.1016/j.jmaa.2013.08.014. Google Scholar [95] P. Giesl and M. Rasmussen, Areas of attraction for nonautonomous differential equations on finite time intervals,, J. Math. Anal. Appl., 390 (2012), 27. doi: 10.1016/j.jmaa.2011.12.051. Google Scholar [96] P. Giesl and H. Wendland, Meshless collocation: Error estimates with application to dynamical systems,, SIAM J. Numer. Anal., 45 (2007), 1723. doi: 10.1137/060658813. Google Scholar [97] P. Giesl and H. Wendland, Approximating the basin of attraction of time-periodic {ODE}s by meshless collocation,, Discrete Contin. Dyn. Syst., 25 (2009), 1249. doi: 10.3934/dcds.2009.25.1249. Google Scholar [98] P. Giesl and H. Wendland, Numerical determination of the basin of attraction for asymptotically autonomous dynamical systems,, Nonlinear Anal., 75 (2012), 2823. doi: 10.1016/j.na.2011.11.027. Google Scholar [99] R. Goebel, R. Sanfelice and A. Teel, Hybrid Dynamical Systems,, Modeling, (2012). Google Scholar [100] R. Goebel, A. Teel, T. Hu and Z. Lin, Conjugate convex Lyapunov functions for dual linear differential inclusions,, IEEE Trans. Automat. Control, 51 (2006), 661. doi: 10.1109/TAC.2006.872764. Google Scholar [101] A. Goullet, S. Harker, K. Mischaikow, W. Kalies and D. Kasti, Efficient computation of Lyapunov functions for Morse decompositions,, Discrete Contin. Dyn. Syst. Ser. B, 8 (2015), 2419. doi: 10.3934/dcdsb.2015.20.2419. Google Scholar [102] B. Grosman and D. Lewin, Lyapunov-based stability analysis automated by genetic programming,, Automatica, 45 (2009), 252. doi: 10.1016/j.automatica.2008.07.014. Google Scholar [103] L. Grujić, Exact determination of a Lyapunov function and the asymptotic stability domain,, Internat. J. Systems Sci., 23 (1992), 1871. doi: 10.1080/00207729208949427. Google Scholar [104] L. Grujić, Complete exact solution to the Lyapunov stability problem: Time-varying nonlinear systems with differentiable motions,, Nonlinear Anal., 22 (1994), 971. doi: 10.1016/0362-546X(94)90060-4. Google Scholar [105] L. Grüne, Asymptotic Behavior of Dynamical and Control Systems Under Perturbation and Discretization,, Lecture Notes in Mathematics, (1783). doi: 10.1007/b83677. Google Scholar [106] L. Grüne, P. Kloeden, S. Siegmund and F. Wirth, Lyapunov's second method for nonautonomous differential equations,, Discrete Contin. Dyn. Syst., 18 (2007), 375. doi: 10.3934/dcds.2007.18.375. Google Scholar [107] O. $\ddot G$urel and L. Lapidus, A guide to the generation of Liapunov functions,, Indust. Engrg. Chem., 61 (1969), 30. doi: 10.1021/ie50711a006. Google Scholar [108] S. Hafstein, A constructive converse Lyapunov theorem on exponential stability,, Discrete Contin. Dyn. Syst., 10 (2004), 657. doi: 10.3934/dcds.2004.10.657. Google Scholar [109] S. Hafstein, A constructive converse Lyapunov theorem on asymptotic stability for nonlinear autonomous ordinary differential equations,, Dynamical Systems: An International Journal, 20 (2005), 281. doi: 10.1080/14689360500164873. Google Scholar [110] S. Hafstein, An Algorithm for Constructing Lyapunov Functions,, Electronic Journal of Differential Equations. Monograph, (2007). Google Scholar [111] S. Hafstein, C. Kellett and H. Li, Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction,, in Proceedings of the 2014 American Control Conference (no. 0170), (2014), 548. doi: 10.1109/ACC.2014.6858660. Google Scholar [112] W. Hahn, Stability of Motion,, Springer, (1967). Google Scholar [113] G. Haller, Finding finite-time invariant manifolds in two-dimensional velocity fields,, Chaos, 10 (2000), 99. doi: 10.1063/1.166479. Google Scholar [114] B. Hargrave, Using Genetic Algorithms to Optimize Control Lyapunov Functions,, PhD thesis, (2008). Google Scholar [115] P. Hartman, Ordinary Differential Equations,, Wiley, (1964). Google Scholar [116] P. Hartman and C. Olech, On global asymptotic stability of solutions of differential equations,, Trans. Amer. Math. Soc., 104 (1962), 154. Google Scholar [117] M. Abu Hassan and C. Storey, Numerical determination of domains of attraction for electrical power systems using the method of Zubov,, Int. J. Control, 34 (1981), 371. doi: 10.1080/00207178108922536. Google Scholar [118] C. Hsu, Cell-to-cell Mapping,, Applied Mathematical Sciences, (1987). doi: 10.1007/978-1-4757-3892-6. Google Scholar [119] T. Hu and Z. Lin, Composite quadratic Lyapunov functions for constrained control systems,, IEEE Trans. Automat. Control, 48 (2003), 440. doi: 10.1109/TAC.2003.809149. Google Scholar [120] M. Hurley, Lyapunov functions and attractors in arbitrary metric spaces,, Proc. Amer. Math. Soc., 126 (1998), 245. doi: 10.1090/S0002-9939-98-04500-6. Google Scholar [121] B. Ingalls, E. Sontag and Y. Wang, An infinite-time relaxation theorem for differential inclusions,, Proc. Amer. Math. Soc., 131 (2003), 487. doi: 10.1090/S0002-9939-02-06539-5. Google Scholar [122] T. Johansen, Computation of Lyapunov functions for smooth, nonlinear systems using convex optimization,, Automatica, 36 (2000), 1617. doi: 10.1016/S0005-1098(00)00088-1. Google Scholar [123] M. Johansson, Piecewise Linear Control Systems,, Lecture Notes in Control and Information Sciences, (2003). doi: 10.1007/3-540-36801-9. Google Scholar [124] M. Johansson and A. Rantzer, Computation of piecewise quadratic Lyapunov functions for hybrid systems,, IEEE Trans. Automat. Control, 43 (1998), 555. doi: 10.1109/9.664157. Google Scholar [125] P. Julian, A High Level Canonical Piecewise Linear Representation: Theory and Applications,, PhD thesis, (1999). Google Scholar [126] P. Julian, J. Guivant and A. Desages, A parametrization of piecewise linear Lyapunov functions via linear programming,, Int. J. Control, 72 (1999), 702. doi: 10.1080/002071799220876. Google Scholar [127] O. Junge, Rigorous discretization of subdivision techniques,, in International Conference on Differential Equations, (1999), 916. Google Scholar [128] W. Kalies, K. Mischaikow and R. VanderVorst, An algorithmic approach to chain recurrence,, Found. Comput. Math, 5 (2005), 409. doi: 10.1007/s10208-004-0163-9. Google Scholar [129] R. Kamyar and M. Peet, Polynomial optimization with applications to stability analysis and control - Alternatives to sum of squares,, Discrete Contin. Dyn. Syst. Ser. B, (): 2383. doi: 10.3934/dcdsb.2015.20.2383. Google Scholar [130] J. Kapinski, J. Deshmukh, S. Sankaranarayanan and N. Arechiga, Simulation-guided Lyapunov analysis for hybrid dynamical systems,, in Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control (HSCC 2014), (2014), 133. doi: 10.1145/2562059.2562139. Google Scholar [131] C. Kellett, A compendium of comparison function results,, Math. Control Signals Syst., 26 (2014), 339. doi: 10.1007/s00498-014-0128-8. Google Scholar [132] C. Kellett, Classical converse theorems in Lyapunov's second method,, Discrete Contin. Dyn. Syst. Ser. B, 8 (2015), 2333. doi: 10.3934/dcdsb.2015.20.2333. Google Scholar [133] H. Khalil, Nonlinear Systems,, Macmillan Publishing Company, (1992). Google Scholar [134] V. Kharitonov, Time-delay Systems: Lyapunov Functionals and Matrices,, Control Engineering. Birkhäuser/Springer, (2013). doi: 10.1007/978-0-8176-8367-2. Google Scholar [135] R. Khasminskii, Stochastic Stability of Differential Equations,, Springer, (2012). doi: 10.1007/978-3-642-23280-0. Google Scholar [136] E. Kinnen and C. Chen, Liapunov functions derived from auxiliary exact differential equations,, Automatica, 4 (1968), 195. doi: 10.1016/0005-1098(68)90014-9. Google Scholar [137] P. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Amer. Mathematical Society, (2011). doi: 10.1090/surv/176. Google Scholar [138] P. Koltai, A stochastic approach for computing the domain of attraction without trajectory simulation,, in Dynamical Systems, (2011), 854. Google Scholar [139] N. Krasovskiĭ, Problems of the Theory of Stability of Motion,, English translation by Stanford University Press, (1963). Google Scholar [140] A. Kravchuk, G. Leonov and D. Ponomarenko, A criterion for the strong orbital stability of the trajectories of dynamical systems I,, Diff. Uravn., 28 (1992), 1507. Google Scholar [141] V. Lakshmikantham, V. Matrosov and S. Sivasundaram, Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems,, Mathematics and its Applications, (1991). doi: 10.1007/978-94-015-7939-1. Google Scholar [142] M. Lazar, On infinity norms as Lyapunov functions: Alternative necessary and sufficient conditions,, in Proceedings of the 49th IEEE Conference on Decision and Control, (2010), 5936. doi: 10.1109/CDC.2010.5717266. Google Scholar [143] M. Lazar and A. Doban, On infinity norms as Lyapunov functions for continuous-time dynamical systems,, in Proceedings of the 50th IEEE Conference on Decision and Control, (2011), 7567. doi: 10.1109/CDC.2011.6161163. Google Scholar [144] M. Lazar, A. Doban and N. Athanasopoulos, On stability analysis of discrete-time homogeneous dynamics,, in Proceedings of the 17th International Conference on Systems Theory, (2013), 297. doi: 10.1109/ICSTCC.2013.6688976. Google Scholar [145] M. Lazar and A. Jokić, On infinity norms as Lyapunov functions for piecewise affine systems,, in HSCC'10, (2010), 131. doi: 10.1145/1755952.1755972. Google Scholar [146] G. Leonov, I. Burkin and A. Shepelyavyi, Frequency Methods in Oscillation Theory,, Mathematics and its Applications, (1996). doi: 10.1007/978-94-009-0193-3. Google Scholar [147] D. Lewis, Metric properties of differential equations,, Amer. J. Math., 71 (1949), 294. doi: 10.2307/2372245. Google Scholar [148] H. Li, R. Baier, L. Grüne, S. Hafstein and F. Wirth, Computation of local ISS Lyapunov functions via linear programming,, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS) (no. 0158), (0158), 1189. Google Scholar [149] H. Li, R. Baier, L. Grüne, S. Hafstein and F. Wirth, Computation of local ISS Lyapunov functions with low gains via linear programming,, Discrete Contin. Dyn. Syst. Ser. B, 8 (2015), 2477. doi: 10.3934/dcdsb.2015.20.2477. Google Scholar [150] H. Li, S. Hafstein and C. Kellett, Computation of Lyapunov functions for discrete-time systems using the Yoshizawa construction,, in Proceedings of the 53rd IEEE Conference on Decision and Control - CDC 2014, (2014), 5512. doi: 10.1109/CDC.2014.7040251. Google Scholar [151] D. Liberzon, Switching in Systems and Control,, Systems & Control: Foundations & Applications, (2003). doi: 10.1007/978-1-4612-0017-8. Google Scholar [152] Y. Lin, E. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability,, SIAM J. Control Optimization, 34 (1996), 124. doi: 10.1137/S0363012993259981. Google Scholar [153] Z. Liu, The random case of Conley's theorem,, Nonlinearity, 19 (2006), 277. doi: 10.1088/0951-7715/19/2/002. Google Scholar [154] Z. Liu, The random case of Conley's theorem. II. The complete Lyapunov function,, Nonlinearity, 20 (2007), 1017. doi: 10.1088/0951-7715/20/4/012. Google Scholar [155] Z. Liu, The random case of Conley's theorem. III. Random semiflow case and Morse decomposition,, Nonlinearity, 20 (2007), 2773. doi: 10.1088/0951-7715/20/12/003. Google Scholar [156] W. Lohmiller and J.-J. Slotine, On Contraction Analysis for Non-linear Systems,, Automatica, 34 (1998), 683. doi: 10.1016/S0005-1098(98)00019-3. Google Scholar [157] K. Loparo and G. Blankenship, Estimating the domain of attraction of nonlinear feedback systems,, IEEE Trans. Automat. Control, 23 (1978), 602. Google Scholar [158] A. Lyapunov, The general problem of the stability of motion,, Internat. J. Control, 55 (1992), 521. doi: 10.1080/00207179208934253. Google Scholar [159] M. Malisoff and F. Mazenc, Constructions of Strict Lyapunov Functions,, Communications and Control Engineering, (2009). doi: 10.1007/978-1-84882-535-2. Google Scholar [160] I. Manchester and J.-J. Slotine, Transverse contraction criteria for existence, stability, and robustness of a limit cycle,, Systems Control Lett., 63 (2014), 32. doi: 10.1016/j.sysconle.2013.10.005. Google Scholar [161] X. Mao, Stochastic Differential Equations and Applications,, 2nd edition, (2008). doi: 10.1533/9780857099402. Google Scholar [162] S. Margolis and W. Vogt, Control engineering applications of V. I. Zubov's construction procedure for Lyapunov functions,, IEEE Trans. Automat. Control, 8 (1963), 104. doi: 10.1109/TAC.1963.1105553. Google Scholar [163] S. Marinósson, Lyapunov function construction for ordinary differential equations with linear programming,, Dynamical Systems: An International Journal, 17 (2002), 137. doi: 10.1080/0268111011011847. Google Scholar [164] S. Marinósson, Stability Analysis of Nonlinear Systems with Linear Programming: A Lyapunov Functions Based Approach,, PhD thesis, (2002). Google Scholar [165] A. Martynyuk, Analysis of stability problems via Matrix Lyapunov Functions,, J. Appl. Math. Stochastic Anal., 3 (1990), 209. doi: 10.1155/S104895339000020X. Google Scholar [166] J. Massera, On Liapounoff's conditions of stability,, Ann. of Math., 50 (1949), 705. doi: 10.2307/1969558. Google Scholar [167] J. Massera, Contributions to stability theory,, Ann. of Math., 64 (1956), 182. doi: 10.2307/1969955. Google Scholar [168] V. Matrosov, On the stability of motion,, J. Appl. Math. Mech., 26 (1963), 1337. Google Scholar [169] P. Menck, J. Heitzig, N. Marwan and K. Kurths, How basin stability complements the linear-stability paradigm,, Nature Physics, 9 (2013), 89. doi: 10.1038/nphys2516. Google Scholar [170] S. Meyn and R. Tweedie, Markov Chains and Stochastic Stability,, 2nd edition, (2009). doi: 10.1017/CBO9780511626630. Google Scholar [171] A. Michel, L. Hou and D. Liu, Stability of Dynamical Systems: Continuous, Discontinuous, and Discrete Systems,, Systems & Control: Foundations & Applications, (2008). Google Scholar [172] A. Michel, R. Miller and B. Nam, Stability analysis of interconnected systems using computer generated Lyapunov functions,, IEEE Trans. Circuits and Systems, 29 (1982), 431. doi: 10.1109/TCS.1982.1085181. Google Scholar [173] A. Michel, B. Nam and V. Vittal, Computer generated Lyapunov functions for interconnected systems: Improved results with applications to power system,, IEEE Trans. Circuits and Systems, 31 (1984), 189. doi: 10.1109/TCS.1984.1085483. Google Scholar [174] A. Michel, N. Sarabudla and R. Miller, Stability analysis of complex dynamical systems,, Circuits Systems Signal Process, 1 (1982), 171. doi: 10.1007/BF01600051. Google Scholar [175] C. Mikkelsen, Numerical Methods For Large Lyapunov Equations,, PhD thesis, (2009). Google Scholar [176] N. Mohammed and P. Giesl, Grid refinement in the construction of Lyapunov functions using radial basis functions,, Discrete Contin. Dyn. Syst. Ser. B, 8 (2015), 2453. doi: 10.3934/dcdsb.2015.20.2453. Google Scholar [177] A. Molchanov and E. Pyatnitskiiĭ, Criteria of asymptotic stability of differential and difference inclusions encountered in control theory,, Systems Control Lett., 13 (1989), 59. doi: 10.1016/0167-6911(89)90021-2. Google Scholar [178] A. Molchanov and E. Pyatnitskiĭ, Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems I, II,, Automat. Remote Control, 47 (1986), 344. Google Scholar [179] N. Noroozi, P. Karimaghaee, F. Safaei and H. Javadi, Generation of Lyapunov functions by neural networks,, in Proceedings of the World Congress on Engineering 2008, (2008). Google Scholar [180] D. Norton, The fundamental theorem of dynamical systems,, Comment. Math. Univ. Carolinae, 36 (1995), 585. Google Scholar [181] Y. Ohta, On the construction of piecewise linear Lyapunov functions,, in Proceedings of the 40th IEEE Conference on Decision and Control, 3 (2001), 2173. doi: 10.1109/CDC.2001.980577. Google Scholar [182] Y. Ohta and M. Tsuji, A generalization of piecewise linear Lyapunov functions,, in Proceedings of the 42nd IEEE Conference on Decision and Control, 5 (2003), 5091. doi: 10.1109/CDC.2003.1272443. Google Scholar [183] R. O'Shea, The extension of Zubov's method to sampled data control systems described by nonlinear autonomous difference equations,, IEEE Trans. Automat. Control, 9 (1964), 62. Google Scholar [184] S. Panikhom and S. Sujitjorn, Numerical approach to construction of Lyapunov function for nonlinear stability analysis,, Research Journal of Applied Sciences, 4 (2012), 2915. Google Scholar [185] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Pranja, P. Seiler and P. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB,, User's Guide, (2013). Google Scholar [186] P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimiziation,, PhD thesis, (2000). Google Scholar [187] M. Patrão, Existence of complete Lyapunov functions for semiflows on separable metric spaces,, Far East J. Dyn. Syst., 17 (2011), 49. Google Scholar [188] M. Peet, Exponentially stable nonlinear systems have polynomial Lyapunov functions on bounded regions,, IEEE Trans. Automat. Control, 54 (2009), 979. doi: 10.1109/TAC.2009.2017116. Google Scholar [189] M. Peet and A. Papachristodoulou, A converse sum of squares Lyapunov result with a degree bound,, IEEE Trans. Automat. Control, 57 (2012), 2281. doi: 10.1109/TAC.2012.2190163. Google Scholar [190] S. Pettersson and B. Lennartson, Stability and robustness for hybrid systems,, in Proceedings of the 35th IEEE Conference on Decision and Control, (1996), 1202. doi: 10.1109/CDC.1996.572653. Google Scholar [191] A. Polanski, Lyapunov functions construction by linear programming,, IEEE Trans. Automat. Control, 42 (1997), 1113. doi: 10.1109/9.599986. Google Scholar [192] A. Polanski, On absolute stability analysis by polyhedral Lyapunov functions,, Automatica, 36 (2000), 573. doi: 10.1016/S0005-1098(99)00180-6. Google Scholar [193] I. Pólik and T. Terlaky, A survey of the S-lemma,, SIAM Review, 49 (2007), 371. doi: 10.1137/S003614450444614X. Google Scholar [194] C. Prieur and F. Mazenc, ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws,, Math. Control Signals Syst., 24 (2012), 111. doi: 10.1007/s00498-012-0074-2. Google Scholar [195] D. Prokhorov, A Lyapunov machine for stability analysis of nonlinear systems,, in Proceedings of the IEEE International Conference on Neural Networks, (1994), 1028. doi: 10.1109/ICNN.1994.374324. Google Scholar [196] S. Raković and M. Lazar, The Minkowski-Lyapunov equation for linear dynamics: Theoretical foundations,, Automatica, 50 (2014), 2015. doi: 10.1016/j.automatica.2014.05.023. Google Scholar [197] M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems,, Lecture Notes in Mathematics, (1907). Google Scholar [198] M. Rasmussen, Morse decompositions of nonautonomous dynamical systems,, Trans. Amer. Math. Soc., 359 (2007), 5091. doi: 10.1090/S0002-9947-07-04318-8. Google Scholar [199] S. Ratschan and Z. She, Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions,, SIAM J. Control Optim., 48 (2010), 4377. doi: 10.1137/090749955. Google Scholar [200] M. Rezaiee-Pajand and B. Moghaddasie, Estimating the region of attraction via collocation for autonomous nonlinear systems,, Structural Engineering and Mechanics, 41 (2012), 263. Google Scholar [201] M. Roozbehani, S. Megretski and E. Feron, Optimization of Lyapunov invariants in verification of software systems,, IEEE Trans. Automat. Control, 58 (2013), 696. doi: 10.1109/TAC.2013.2241472. Google Scholar [202] B. Rüffer, N. van de Wouw and M. Mueller, Convergent systems vs. incremental stability,, Systems Control Lett., 62 (2013), 277. doi: 10.1016/j.sysconle.2012.11.015. Google Scholar [203] G. Serpen, Empirical approximation for Lyapunov functions with artificial neural nets,, in Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, (2005), 735. doi: 10.1109/IJCNN.2005.1555943. Google Scholar [204] Z. She, H. Li, B. Xue, Z. Zheng and B. Xia, Discovering polynomial Lyapunov functions for continuous dynamical systems,, J. Symbolic Comput., 58 (2013), 41. doi: 10.1016/j.jsc.2013.06.003. Google Scholar [205] Z. She and B. Xue, Computing an invariance kernel with target by computing Lyapunov-like functions,, IET Control Theory Appl., 7 (2013), 1932. doi: 10.1049/iet-cta.2013.0275. Google Scholar [206] R. Shorten, F. Wirth, O. Mason, K. Wulff and C. King, Stability criteria for switched and hybrid systems,, SIAM Review, 49 (2007), 545. doi: 10.1137/05063516X. Google Scholar [207] D. Šiljak, Large-scale Dynamic Systems. Stability and Structure,, North-Holland Series in System Science and Engineering, (1979). Google Scholar [208] E. Sontag, A Lyapunov-like characterization of asymptotic controllability,, SIAM J. Control Optimization, 21 (1983), 462. doi: 10.1137/0321028. Google Scholar [209] E. Sontag, Smooth stabilization implies coprime factorization,, IEEE Trans. Automat. Control, 34 (1989), 435. doi: 10.1109/9.28018. Google Scholar [210] E. Sontag, New characterizations of input-to-state stability,, IEEE Trans. Automat. Control, 41 (1996), 1283. doi: 10.1109/9.536498. Google Scholar [211] E. Sontag, Mathematical Control Theory,, 2nd edition, (1998). doi: 10.1007/978-1-4612-0577-7. Google Scholar [212] E. Sontag and H. Sussman, Nonsmooth control-Lyapunov functions,, in Proceedings of the 34th IEEE Conference on Decision and Control, (1995), 2799. doi: 10.1109/CDC.1995.478542. Google Scholar [213] E. Sontag and Y. Wang, On characterizations of the input-to-state stability property,, Systems Control Lett., 24 (1995), 351. doi: 10.1016/0167-6911(94)00050-6. Google Scholar [214] B. Stenström, Dynamical systems with a certain local contraction property,, Math. Scand., 11 (1962), 151. Google Scholar [215] A. Subbaraman and A. Teel, A converse Lyapunov theorem for strong global recurrence,, Automatica, 49 (2013), 2963. doi: 10.1016/j.automatica.2013.07.001. Google Scholar [216] A. Subbaraman and A. Teel, A Matrosov theorem for strong global recurrence,, Automatica, 49 (2013), 3390. doi: 10.1016/j.automatica.2013.08.009. Google Scholar [217] Z. Sun, Stability of piecewise linear systems revisited,, Annu. Rev. Control, 34 (2010), 221. doi: 10.1016/j.arcontrol.2010.08.003. Google Scholar [218] Z. Sun and S. Ge, Stability Theory of Switched Dynamical Systems,, Communications and Control Engineering, (2011). doi: 10.1007/978-0-85729-256-8. Google Scholar [219] K. Tanaka, T. Hori and H. Wang, A multiple Lyapunov function approach to stabilization of fuzzy control systems,, IEEE T. Fuzzy Syst., 11 (2003), 582. doi: 10.1109/TFUZZ.2003.814861. Google Scholar [220] A. R. Teel and L. Praly, A smooth Lyapunov function from a class-KL estimate involving two positive semidefinite functions,, ESAIM Control Optim. Calc. Var., 5 (2000), 313. doi: 10.1051/cocv:2000113. Google Scholar [221] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences, (1997). doi: 10.1007/978-1-4612-0645-3. Google Scholar [222] A. Tesi, F. Villoresi and R. Genesio, On stability domain estimation via a quadratic Lyapunov function: Convexity and optimality properties for polynomial systems,, in Proceedings of the 33rd Conference on Decision and Control, (1994), 1907. doi: 10.1109/CDC.1994.411100. Google Scholar [223] A. Vannelli and M. Vidyasagar, Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems,, Automatica, 21 (1985), 69. doi: 10.1016/0005-1098(85)90099-8. Google Scholar [224] K. Wang and A. Michel, On the stability of a family of nonlinear time-varying system,, IEEE Trans. Circuits and Systems, 43 (1996), 517. doi: 10.1109/81.508171. Google Scholar [225] H. Wendland, Scattered Data Approximation,, Cambridge Monographs on Applied and Computational Mathematics, (2005). Google Scholar [226] C. Xu and G. Sallet, Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems,, ESAIM Control Optim. Calc. Var., 7 (2002), 421. doi: 10.1051/cocv:2002062. Google Scholar [227] C. Yfoulis and R. Shorten, A numerical technique for the stability analysis of linear switched systems,, Int. J. Control, 77 (2004), 1019. doi: 10.1080/002071704200026963. Google Scholar [228] T. Yoshizawa, Stability Theory by Liapunov's Second Method,, Publications of the Mathematical Society of Japan, (1966). Google Scholar [229] V. Zubov, Methods of A. M. Lyapunov and Their Application,, Translation prepared under the auspices of the United States Atomic Energy Commission; edited by Leo F. Boron, (1964). Google Scholar
 [1] Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218 [2] Sigurdur Freyr Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 657-678. doi: 10.3934/dcds.2004.10.657 [3] Hjörtur Björnsson, Sigurdur Hafstein, Peter Giesl, Enrico Scalas, Skuli Gudmundsson. Computation of the stochastic basin of attraction by rigorous construction of a Lyapunov function. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4247-4269. doi: 10.3934/dcdsb.2019080 [4] Antonio Siconolfi, Gabriele Terrone. A metric proof of the converse Lyapunov theorem for semicontinuous multivalued dynamics. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4409-4427. doi: 10.3934/dcds.2012.32.4409 [5] Christopher M. Kellett. Classical converse theorems in Lyapunov's second method. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2333-2360. doi: 10.3934/dcdsb.2015.20.2333 [6] Peter Giesl, Holger Wendland. Construction of a contraction metric by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3843-3863. doi: 10.3934/dcdsb.2018333 [7] Peter Giesl, Holger Wendland. Approximating the basin of attraction of time-periodic ODEs by meshless collocation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1249-1274. doi: 10.3934/dcds.2009.25.1249 [8] Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010 [9] Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701 [10] Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172 [11] Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555 [12] Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056 [13] Peter Giesl, Holger Wendland. Approximating the basin of attraction of time-periodic ODEs by meshless collocation of a Cauchy problem. Conference Publications, 2009, 2009 (Special) : 259-268. doi: 10.3934/proc.2009.2009.259 [14] Peter Giesl. Necessary condition for the basin of attraction of a periodic orbit in non-smooth periodic systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 355-373. doi: 10.3934/dcds.2007.18.355 [15] Ugo Bessi. The stochastic value function in metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1819-1839. doi: 10.3934/dcds.2017076 [16] B. Coll, A. Gasull, R. Prohens. On a criterium of global attraction for discrete dynamical systems. Communications on Pure & Applied Analysis, 2006, 5 (3) : 537-550. doi: 10.3934/cpaa.2006.5.537 [17] Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141 [18] Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068 [19] Giuseppe Savaré. Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1641-1661. doi: 10.3934/dcds.2014.34.1641 [20] Matthias Gerdts, Sven-Joachim Kimmerle. Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin. Conference Publications, 2015, 2015 (special) : 515-524. doi: 10.3934/proc.2015.0515

2018 Impact Factor: 1.008