September  2015, 20(7): 2233-2256. doi: 10.3934/dcdsb.2015.20.2233

Strong averaging principle for slow-fast SPDEs with Poisson random measures

1. 

College of Mathematics and Information Science, and Henan Engineering, Laboratory for Big Data Statistical Analysis and Optimal Control, Henan Normal University, Xinxiang, Henan 453007, China, China

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, China

Received  July 2014 Revised  December 2014 Published  July 2015

This work concerns the problem associated with an averaging principle for two-time-scales stochastic partial differential equations (SPDEs) driven by cylindrical Wiener processes and Poisson random measures. Under suitable dissipativity conditions, the existence of an averaging equation eliminating the fast variable for the coupled system is proved, and as a consequence, the system can be reduced to a single SPDE with a modified coefficient. Moreover, it is shown that the slow component mean-square strongly converges to the solution of the corresponding averaging equation.
Citation: Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233
References:
[1]

J. Bao, A. Truman and C. Yuan, Stability in distribution of mild solutions to stochastic partial differential delay equations with jump,, Proc. R. Soc Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 2111. doi: 10.1098/rspa.2008.0486. Google Scholar

[2]

J. Bao, A. Truman and C. Yuan, Almost sure asymptotic Stability of stochastic partial differential equations with jump,, SIAM J. Control Optim., 49 (2011), 771. doi: 10.1137/100786812. Google Scholar

[3]

S. Cerrai and M. I. Freidlin, Averaging principle for a class of stochastic reaction-diffusion equations,, Proba. Theory Related Fields., 144 (2009), 137. doi: 10.1007/s00440-008-0144-z. Google Scholar

[4]

S. Cerrai, A Khasminkii type averaging principle for stochastic reaction-diffusion equations,, Ann. Appl. Probab., 19 (2009), 899. doi: 10.1214/08-AAP560. Google Scholar

[5]

G. Cao and K. He, Successive approximations of infinite dimensional semilinear backward stochastic evolutions with jump,, Stoch. Proc. Appl., 117 (2007), 1251. doi: 10.1016/j.spa.2007.01.003. Google Scholar

[6]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992). doi: 10.1017/CBO9780511666223. Google Scholar

[7]

A. Debussche, M. Hogele and P. Imkeller, The dynamics of nonlinear reaction-diffusion equations with small Lévy noise,, Springer Lecture notes in Mathematics, (2013). Google Scholar

[8]

Z. Dong and T. Xu, One-dimensional stochastic Burgers equation driven by Lévy processes,, J. Funct. Anal., 243 (2007), 631. doi: 10.1016/j.jfa.2006.09.010. Google Scholar

[9]

D. Filipovic, S. Tappe and J. Teichmann, Jump-difusions in Hilbert spaces: Existence, stability and numerics,, Stochastics, 82 (2010), 475. doi: 10.1080/17442501003624407. Google Scholar

[10]

H. Fu and J. Liu, Strong convergence in stochastic averaging for two time-scales stochastic partial differential equations,, J. Math. Anal. Appl., 384 (2011), 70. doi: 10.1016/j.jmaa.2011.02.076. Google Scholar

[11]

H. Fu and J. Duan, An averaging principle for two time-scales stochastic partial differential equations,, Stochastic and Dynamics, 11 (2011), 353. doi: 10.1142/S0219493711003346. Google Scholar

[12]

D. Givon, Strong convergence rate for two-time-scale jump-diffusion stochastic differential sysytems,, SIAM J. Multi. Model. Simul., 6 (2007), 577. doi: 10.1137/060673345. Google Scholar

[13]

J. Golec, Stochastic averaging principle for systems with pathwise uniqueness,, Stochastic Anal. Appl., 13 (1995), 307. doi: 10.1080/07362999508809400. Google Scholar

[14]

E. Hausenblas, Existence, uniqueness and regularity of SPDEs driven by Poisson random measures,, Electron. J. Probab., 10 (2005), 1496. doi: 10.1214/EJP.v10-297. Google Scholar

[15]

W. Jia and W. Zhu, Stochastic averaging of quasi-partially integrable Hamiltonian systems under combined Gaussian and Poisson white noise excitations,, Physica A: Statistical Mechanics and its Applications, 398 (2014), 125. doi: 10.1016/j.physa.2013.12.009. Google Scholar

[16]

W. Jia, W. Zhu and Y. Xu, Stochastic averaging of quasi-non-integrable Hamiltonian systems under combined Gaussian and Poisson white noise excitations,, International Journal of Non-Linear Mechanics, 51 (2013), 45. Google Scholar

[17]

R. Z. Khasminskii, On the principle of averaging the Itô stochastic differential equations (in Russian),, kibernetika., 4 (1968), 260. Google Scholar

[18]

D. Liu, Strong convergence of principle of averaging for multiscale stochastic dynamical systems,, Commun. Math. Sci., 8 (2010), 999. doi: 10.4310/CMS.2010.v8.n4.a11. Google Scholar

[19]

W. Liu and M. Stephan, Yosida approximations for multivalued stochastic partial differential equations driven by Lévy noise on a Gelfand triple,, J. Math. Anal. Appl., 410 (2014), 158. doi: 10.1016/j.jmaa.2013.08.016. Google Scholar

[20]

A. Løkka, B. Øksendal and F. Proske, Stochastic partial differential equations driven by Lévy space-time white noise,, The Annals of Applied Probability, 14 (2004), 1506. doi: 10.1214/105051604000000413. Google Scholar

[21]

B. Øksendal, Stochastic Differential Equations,, $6^{th}$ edition, (2003). doi: 10.1007/978-3-642-14394-6. Google Scholar

[22]

A. Pazy, Semigroups of Linear Operations and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[23]

S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise,, Encyclopedia Mathematics, (2007). doi: 10.1017/CBO9780511721373. Google Scholar

[24]

M. Röckner and T. Zhang, Stochastic evolution equation of jump type: Existence, uniqueness and large deviation principles,, Potential Anal., 26 (2007), 255. doi: 10.1007/s11118-006-9035-z. Google Scholar

[25]

J. Seidler and I. Vrkoč, An averaging principle for stochastic evolution equations,, Časopis Pěst. Mat., 115 (1990), 240. Google Scholar

[26]

T. Taniguchi, The existence and asymptotic behaviour of energy solutions to stochastic 2D functional Navier-Stokes equations driven by Lévy processes,, J. Math. Anal. Appl., 385 (2012), 634. doi: 10.1016/j.jmaa.2011.06.076. Google Scholar

[27]

W. Wang and A. J. Roberts, Average and deviation for slow-fast SPDEs,, J. Differential Equations, 253 (2012), 1265. doi: 10.1016/j.jde.2012.05.011. Google Scholar

[28]

G. Yin and H. Yang, Two-time-scale jump-diffusion models with Markovian switching regimes,, Stochastics and Stochastic Reports, 76 (2004), 77. doi: 10.1080/10451120410001696261. Google Scholar

show all references

References:
[1]

J. Bao, A. Truman and C. Yuan, Stability in distribution of mild solutions to stochastic partial differential delay equations with jump,, Proc. R. Soc Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 2111. doi: 10.1098/rspa.2008.0486. Google Scholar

[2]

J. Bao, A. Truman and C. Yuan, Almost sure asymptotic Stability of stochastic partial differential equations with jump,, SIAM J. Control Optim., 49 (2011), 771. doi: 10.1137/100786812. Google Scholar

[3]

S. Cerrai and M. I. Freidlin, Averaging principle for a class of stochastic reaction-diffusion equations,, Proba. Theory Related Fields., 144 (2009), 137. doi: 10.1007/s00440-008-0144-z. Google Scholar

[4]

S. Cerrai, A Khasminkii type averaging principle for stochastic reaction-diffusion equations,, Ann. Appl. Probab., 19 (2009), 899. doi: 10.1214/08-AAP560. Google Scholar

[5]

G. Cao and K. He, Successive approximations of infinite dimensional semilinear backward stochastic evolutions with jump,, Stoch. Proc. Appl., 117 (2007), 1251. doi: 10.1016/j.spa.2007.01.003. Google Scholar

[6]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992). doi: 10.1017/CBO9780511666223. Google Scholar

[7]

A. Debussche, M. Hogele and P. Imkeller, The dynamics of nonlinear reaction-diffusion equations with small Lévy noise,, Springer Lecture notes in Mathematics, (2013). Google Scholar

[8]

Z. Dong and T. Xu, One-dimensional stochastic Burgers equation driven by Lévy processes,, J. Funct. Anal., 243 (2007), 631. doi: 10.1016/j.jfa.2006.09.010. Google Scholar

[9]

D. Filipovic, S. Tappe and J. Teichmann, Jump-difusions in Hilbert spaces: Existence, stability and numerics,, Stochastics, 82 (2010), 475. doi: 10.1080/17442501003624407. Google Scholar

[10]

H. Fu and J. Liu, Strong convergence in stochastic averaging for two time-scales stochastic partial differential equations,, J. Math. Anal. Appl., 384 (2011), 70. doi: 10.1016/j.jmaa.2011.02.076. Google Scholar

[11]

H. Fu and J. Duan, An averaging principle for two time-scales stochastic partial differential equations,, Stochastic and Dynamics, 11 (2011), 353. doi: 10.1142/S0219493711003346. Google Scholar

[12]

D. Givon, Strong convergence rate for two-time-scale jump-diffusion stochastic differential sysytems,, SIAM J. Multi. Model. Simul., 6 (2007), 577. doi: 10.1137/060673345. Google Scholar

[13]

J. Golec, Stochastic averaging principle for systems with pathwise uniqueness,, Stochastic Anal. Appl., 13 (1995), 307. doi: 10.1080/07362999508809400. Google Scholar

[14]

E. Hausenblas, Existence, uniqueness and regularity of SPDEs driven by Poisson random measures,, Electron. J. Probab., 10 (2005), 1496. doi: 10.1214/EJP.v10-297. Google Scholar

[15]

W. Jia and W. Zhu, Stochastic averaging of quasi-partially integrable Hamiltonian systems under combined Gaussian and Poisson white noise excitations,, Physica A: Statistical Mechanics and its Applications, 398 (2014), 125. doi: 10.1016/j.physa.2013.12.009. Google Scholar

[16]

W. Jia, W. Zhu and Y. Xu, Stochastic averaging of quasi-non-integrable Hamiltonian systems under combined Gaussian and Poisson white noise excitations,, International Journal of Non-Linear Mechanics, 51 (2013), 45. Google Scholar

[17]

R. Z. Khasminskii, On the principle of averaging the Itô stochastic differential equations (in Russian),, kibernetika., 4 (1968), 260. Google Scholar

[18]

D. Liu, Strong convergence of principle of averaging for multiscale stochastic dynamical systems,, Commun. Math. Sci., 8 (2010), 999. doi: 10.4310/CMS.2010.v8.n4.a11. Google Scholar

[19]

W. Liu and M. Stephan, Yosida approximations for multivalued stochastic partial differential equations driven by Lévy noise on a Gelfand triple,, J. Math. Anal. Appl., 410 (2014), 158. doi: 10.1016/j.jmaa.2013.08.016. Google Scholar

[20]

A. Løkka, B. Øksendal and F. Proske, Stochastic partial differential equations driven by Lévy space-time white noise,, The Annals of Applied Probability, 14 (2004), 1506. doi: 10.1214/105051604000000413. Google Scholar

[21]

B. Øksendal, Stochastic Differential Equations,, $6^{th}$ edition, (2003). doi: 10.1007/978-3-642-14394-6. Google Scholar

[22]

A. Pazy, Semigroups of Linear Operations and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[23]

S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise,, Encyclopedia Mathematics, (2007). doi: 10.1017/CBO9780511721373. Google Scholar

[24]

M. Röckner and T. Zhang, Stochastic evolution equation of jump type: Existence, uniqueness and large deviation principles,, Potential Anal., 26 (2007), 255. doi: 10.1007/s11118-006-9035-z. Google Scholar

[25]

J. Seidler and I. Vrkoč, An averaging principle for stochastic evolution equations,, Časopis Pěst. Mat., 115 (1990), 240. Google Scholar

[26]

T. Taniguchi, The existence and asymptotic behaviour of energy solutions to stochastic 2D functional Navier-Stokes equations driven by Lévy processes,, J. Math. Anal. Appl., 385 (2012), 634. doi: 10.1016/j.jmaa.2011.06.076. Google Scholar

[27]

W. Wang and A. J. Roberts, Average and deviation for slow-fast SPDEs,, J. Differential Equations, 253 (2012), 1265. doi: 10.1016/j.jde.2012.05.011. Google Scholar

[28]

G. Yin and H. Yang, Two-time-scale jump-diffusion models with Markovian switching regimes,, Stochastics and Stochastic Reports, 76 (2004), 77. doi: 10.1080/10451120410001696261. Google Scholar

[1]

Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

[2]

Emmanuel Gobet, Mohamed Mrad. Convergence rate of strong approximations of compound random maps, application to SPDEs. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4455-4476. doi: 10.3934/dcdsb.2018171

[3]

Peng Gao. Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5649-5684. doi: 10.3934/dcds.2018247

[4]

Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123

[5]

Wenqing Hu, Chris Junchi Li. A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4951-4977. doi: 10.3934/dcds.2018216

[6]

Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197

[7]

Yuri Kifer. Another proof of the averaging principle for fully coupled dynamical systems with hyperbolic fast motions. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1187-1201. doi: 10.3934/dcds.2005.13.1187

[8]

Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282

[9]

Peng Gao, Yong Li. Averaging principle for the Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2147-2168. doi: 10.3934/dcdsb.2017089

[10]

C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603

[11]

Janusz Mierczyński. Averaging in random systems of nonnegative matrices. Conference Publications, 2015, 2015 (special) : 835-840. doi: 10.3934/proc.2015.0835

[12]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

[13]

Junhao Hu, Chenggui Yuan. Strong convergence of neutral stochastic functional differential equations with two time-scales. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019108

[14]

Janusz Mierczyński, Wenxian Shen. Time averaging for nonautonomous/random linear parabolic equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 661-699. doi: 10.3934/dcdsb.2008.9.661

[15]

Graeme D. Chalmers, Desmond J. Higham. Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 47-64. doi: 10.3934/dcdsb.2008.9.47

[16]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[17]

Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic & Related Models, 2019, 12 (4) : 909-922. doi: 10.3934/krm.2019034

[18]

Chunlai Mu, Jun Zhou, Yuhuan Li. Fast rate of dead core for fast diffusion equation with strong absorption. Communications on Pure & Applied Analysis, 2010, 9 (2) : 397-411. doi: 10.3934/cpaa.2010.9.397

[19]

Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

[20]

Renato Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 171-215. doi: 10.3934/dcds.2016.36.171

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]