August  2015, 20(6): 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

Hopf bifurcation for a spatially and age structured population dynamics model

1. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

2. 

University of Bordeaux, IMB, UMR CNRS 5251, 33076 Bordeaux, France

Received  November 2013 Revised  February 2014 Published  June 2015

This paper is devoted to the study of a spatially and age structured population dynamics model. We study the stability and Hopf bifurcation of the positive equilibrium of the model by using a bifurcation theory in the context of integrated semigroups. This problem is a first example for Hopf bifurcation for a spatially and age/size structured population dynamics model. Bifurcation analysis indicates that Hopf bifurcation occurs at a positive age/size dependent steady state of the model. The results are confirmed by some numerical simulations.
Citation: Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735
References:
[1]

S. Bertoni, Periodic solutions for non-linear equations of structured populations,, J. Math. Anal. Appl., 220 (1998), 250. doi: 10.1006/jmaa.1997.5878. Google Scholar

[2]

P. Bi and X. Fu, Hopf bifurcation in an age-dependent population model with delayed birth process,, I. J. Bifurcation and Chaos, 22 (2012). doi: 10.1142/S0218127412501465. Google Scholar

[3]

C. Castillo-Chavez, H. W. Hethcote, V. Andreasen, S. A. Levin and W. M. Liu, Epidemiological models with age structure, proportionate mixing, and cross-immunity,, J. Math. Biol., 27 (1989), 233. doi: 10.1007/BF00275810. Google Scholar

[4]

J. Chu, A. Ducrot, P. Magal and S. Ruan, Hopf bifurcation in a size-structured population dynamic model with random growth,, Journal of Differential Equations, 247 (2009), 956. doi: 10.1016/j.jde.2009.04.003. Google Scholar

[5]

J. Chu and P. Magal, Hopf bifurcation for a size structured model with resting phase,, Discrete and Continuous Dynamical Systems, 33 (2013), 4891. doi: 10.3934/dcds.2013.33.4891. Google Scholar

[6]

J. Chu, P. Magal and R. Yuan, Hopf bifurcation for a maturity structured population dynamic model,, J. Nonlinear Sci., 21 (2011), 521. doi: 10.1007/s00332-010-9091-9. Google Scholar

[7]

M. G. Crandall and P. H. Rabinowitz, The Hopf bifurcation theorem in infinite dimensions,, Arch. Rational Mech. Anal., 67 (1977), 53. doi: 10.1007/BF00280827. Google Scholar

[8]

J. M. Cushing, Model stability and instability in age structured populations,, J. Theoret. Biol., 86 (1980), 709. doi: 10.1016/0022-5193(80)90307-0. Google Scholar

[9]

J. M. Cushing, Bifurcation of time periodic solutions of the McKendrick equations with applications to population dynamics,, Comput. Math. Appl., 9 (1983), 459. doi: 10.1016/0898-1221(83)90060-3. Google Scholar

[10]

A. Ducrot, Travelling waves for a size and space structured model in population dynamics: Point to sustained oscillating solution connections,, Journal of Differential Equations, 250 (2011), 410. doi: 10.1016/j.jde.2010.09.019. Google Scholar

[11]

A. Ducrot, Z. Liu and P. Magal, Essential growth rate for bounded linear perturbation of non densely defined Cauchy problems,, J. Math. Anal. Appl., 341 (2008), 501. doi: 10.1016/j.jmaa.2007.09.074. Google Scholar

[12]

A. Ducrot, P. Magal and O. Seydi, Nonlinear boundary conditions derived by singular perturbation in age structured population dynamics model,, J. Appl. Anal. Comput., 1 (2011), 373. Google Scholar

[13]

M. Doumic, A. Marciniak-Czochra, B. Perthame and J. P. Zubelli, A structured population model of cell differentiation,, SIAM J. Appl. Math., 71 (2011), 1918. doi: 10.1137/100816584. Google Scholar

[14]

H. Inaba, Mathematical analysis for an evolutionary epidemic model,, in Mathematical Models in Medical and Health Sciences (eds. M. A. Horn, (1998), 213. Google Scholar

[15]

H. Inaba, Endemic threshold and stability in an evolutionary epidemic model,, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, (2002), 337. doi: 10.1007/978-1-4613-0065-6_19. Google Scholar

[16]

T. Kostova and J. Li, Oscillations and stability due to juvenile competitive effects on adult fertility,, Comput. Math. Appl., 32 (1996), 57. doi: 10.1016/S0898-1221(96)00197-6. Google Scholar

[17]

Z. Liu, P. Magal and S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems,, Zeitschrift fur Angewandte Mathematik und Physik, 62 (2011), 191. doi: 10.1007/s00033-010-0088-x. Google Scholar

[18]

P. Magal, Compact attractors for time-periodic age structured population models,, Electron. J. Differential Equations, 2001 (2001), 1. Google Scholar

[19]

P. Magal and S. Ruan, Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models,, Mem. Amer. Math. Soc., 202 (2009). doi: 10.1090/S0065-9266-09-00568-7. Google Scholar

[20]

P. Magal and S. Ruan, On semilinear Cauchy problems with non-dense domain,, Advances in Differential Equations, 14 (2009), 1041. Google Scholar

[21]

P. Magal and S. Ruan, Sustained oscillations in an evolutionary epidemiological model of influenza A drift,, Proc. R. Soc. A, 466 (2010), 965. doi: 10.1098/rspa.2009.0435. Google Scholar

[22]

K. Pakdaman, B. Perthame and D. Salort, Dynamics of a structured neuron population,, Nonlinearity, 23 (2010), 55. doi: 10.1088/0951-7715/23/1/003. Google Scholar

[23]

J. Prüss, On the qualitative behaviour of populations with age-specific interactions,, Comput. Math. Appl., 9 (1983), 327. doi: 10.1016/0898-1221(83)90020-2. Google Scholar

[24]

W. E. Ricker, Stock and recruitment,, J. Fish. Res. Board Canada, 11 (1954), 559. doi: 10.1139/f54-039. Google Scholar

[25]

W. E. Ricker, Computation and interpretation of biological studies of fish populations,, Bull. Fish. Res. Bd. Canada, 191 (1975). Google Scholar

[26]

Y. Su, S. Ruan and J. Wei, Periodicity and synchronization in blood-stage malaria infection,, Journal of Mathematical Biology, 63 (2011), 557. doi: 10.1007/s00285-010-0381-5. Google Scholar

[27]

J. H. Swart, Hopf bifurcation and the stability of nonlinear age-dependent population models,, Comput. Math. Appl., 15 (1988), 555. doi: 10.1016/0898-1221(88)90280-5. Google Scholar

[28]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators,, Differential Integral Equations, 3 (1990), 1035. Google Scholar

[29]

H. R. Thieme, Integrated semigroups and integrated solutions to abstract Cauchy problems,, J. Math. Anal. Appl., 152 (1990), 416. doi: 10.1016/0022-247X(90)90074-P. Google Scholar

[30]

H. R. Thieme, Quasi-compact semigroups via bounded perturbation,, in Advances in Mathematical Population Dynamics-Molecules, (1997), 691. Google Scholar

[31]

Z. Wang and Z. Liu, Hopf bifurcation of an age-structured compartmental pest-pathogen model,, J. Math. Anal. Appl., 385 (2012), 1134. doi: 10.1016/j.jmaa.2011.07.038. Google Scholar

[32]

J. Wu, Theory and Applications of Partial Functional-Differential Equations,, Springer-Verlag, (1996). doi: 10.1007/978-1-4612-4050-1. Google Scholar

[33]

P. Zhang, Z. Feng and F. Milner, A schistosomiasis model with an age structure in human hosts and its application to treatment strategies,, Math. Biosci., 205 (2007), 83. doi: 10.1016/j.mbs.2006.06.006. Google Scholar

show all references

References:
[1]

S. Bertoni, Periodic solutions for non-linear equations of structured populations,, J. Math. Anal. Appl., 220 (1998), 250. doi: 10.1006/jmaa.1997.5878. Google Scholar

[2]

P. Bi and X. Fu, Hopf bifurcation in an age-dependent population model with delayed birth process,, I. J. Bifurcation and Chaos, 22 (2012). doi: 10.1142/S0218127412501465. Google Scholar

[3]

C. Castillo-Chavez, H. W. Hethcote, V. Andreasen, S. A. Levin and W. M. Liu, Epidemiological models with age structure, proportionate mixing, and cross-immunity,, J. Math. Biol., 27 (1989), 233. doi: 10.1007/BF00275810. Google Scholar

[4]

J. Chu, A. Ducrot, P. Magal and S. Ruan, Hopf bifurcation in a size-structured population dynamic model with random growth,, Journal of Differential Equations, 247 (2009), 956. doi: 10.1016/j.jde.2009.04.003. Google Scholar

[5]

J. Chu and P. Magal, Hopf bifurcation for a size structured model with resting phase,, Discrete and Continuous Dynamical Systems, 33 (2013), 4891. doi: 10.3934/dcds.2013.33.4891. Google Scholar

[6]

J. Chu, P. Magal and R. Yuan, Hopf bifurcation for a maturity structured population dynamic model,, J. Nonlinear Sci., 21 (2011), 521. doi: 10.1007/s00332-010-9091-9. Google Scholar

[7]

M. G. Crandall and P. H. Rabinowitz, The Hopf bifurcation theorem in infinite dimensions,, Arch. Rational Mech. Anal., 67 (1977), 53. doi: 10.1007/BF00280827. Google Scholar

[8]

J. M. Cushing, Model stability and instability in age structured populations,, J. Theoret. Biol., 86 (1980), 709. doi: 10.1016/0022-5193(80)90307-0. Google Scholar

[9]

J. M. Cushing, Bifurcation of time periodic solutions of the McKendrick equations with applications to population dynamics,, Comput. Math. Appl., 9 (1983), 459. doi: 10.1016/0898-1221(83)90060-3. Google Scholar

[10]

A. Ducrot, Travelling waves for a size and space structured model in population dynamics: Point to sustained oscillating solution connections,, Journal of Differential Equations, 250 (2011), 410. doi: 10.1016/j.jde.2010.09.019. Google Scholar

[11]

A. Ducrot, Z. Liu and P. Magal, Essential growth rate for bounded linear perturbation of non densely defined Cauchy problems,, J. Math. Anal. Appl., 341 (2008), 501. doi: 10.1016/j.jmaa.2007.09.074. Google Scholar

[12]

A. Ducrot, P. Magal and O. Seydi, Nonlinear boundary conditions derived by singular perturbation in age structured population dynamics model,, J. Appl. Anal. Comput., 1 (2011), 373. Google Scholar

[13]

M. Doumic, A. Marciniak-Czochra, B. Perthame and J. P. Zubelli, A structured population model of cell differentiation,, SIAM J. Appl. Math., 71 (2011), 1918. doi: 10.1137/100816584. Google Scholar

[14]

H. Inaba, Mathematical analysis for an evolutionary epidemic model,, in Mathematical Models in Medical and Health Sciences (eds. M. A. Horn, (1998), 213. Google Scholar

[15]

H. Inaba, Endemic threshold and stability in an evolutionary epidemic model,, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, (2002), 337. doi: 10.1007/978-1-4613-0065-6_19. Google Scholar

[16]

T. Kostova and J. Li, Oscillations and stability due to juvenile competitive effects on adult fertility,, Comput. Math. Appl., 32 (1996), 57. doi: 10.1016/S0898-1221(96)00197-6. Google Scholar

[17]

Z. Liu, P. Magal and S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems,, Zeitschrift fur Angewandte Mathematik und Physik, 62 (2011), 191. doi: 10.1007/s00033-010-0088-x. Google Scholar

[18]

P. Magal, Compact attractors for time-periodic age structured population models,, Electron. J. Differential Equations, 2001 (2001), 1. Google Scholar

[19]

P. Magal and S. Ruan, Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models,, Mem. Amer. Math. Soc., 202 (2009). doi: 10.1090/S0065-9266-09-00568-7. Google Scholar

[20]

P. Magal and S. Ruan, On semilinear Cauchy problems with non-dense domain,, Advances in Differential Equations, 14 (2009), 1041. Google Scholar

[21]

P. Magal and S. Ruan, Sustained oscillations in an evolutionary epidemiological model of influenza A drift,, Proc. R. Soc. A, 466 (2010), 965. doi: 10.1098/rspa.2009.0435. Google Scholar

[22]

K. Pakdaman, B. Perthame and D. Salort, Dynamics of a structured neuron population,, Nonlinearity, 23 (2010), 55. doi: 10.1088/0951-7715/23/1/003. Google Scholar

[23]

J. Prüss, On the qualitative behaviour of populations with age-specific interactions,, Comput. Math. Appl., 9 (1983), 327. doi: 10.1016/0898-1221(83)90020-2. Google Scholar

[24]

W. E. Ricker, Stock and recruitment,, J. Fish. Res. Board Canada, 11 (1954), 559. doi: 10.1139/f54-039. Google Scholar

[25]

W. E. Ricker, Computation and interpretation of biological studies of fish populations,, Bull. Fish. Res. Bd. Canada, 191 (1975). Google Scholar

[26]

Y. Su, S. Ruan and J. Wei, Periodicity and synchronization in blood-stage malaria infection,, Journal of Mathematical Biology, 63 (2011), 557. doi: 10.1007/s00285-010-0381-5. Google Scholar

[27]

J. H. Swart, Hopf bifurcation and the stability of nonlinear age-dependent population models,, Comput. Math. Appl., 15 (1988), 555. doi: 10.1016/0898-1221(88)90280-5. Google Scholar

[28]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators,, Differential Integral Equations, 3 (1990), 1035. Google Scholar

[29]

H. R. Thieme, Integrated semigroups and integrated solutions to abstract Cauchy problems,, J. Math. Anal. Appl., 152 (1990), 416. doi: 10.1016/0022-247X(90)90074-P. Google Scholar

[30]

H. R. Thieme, Quasi-compact semigroups via bounded perturbation,, in Advances in Mathematical Population Dynamics-Molecules, (1997), 691. Google Scholar

[31]

Z. Wang and Z. Liu, Hopf bifurcation of an age-structured compartmental pest-pathogen model,, J. Math. Anal. Appl., 385 (2012), 1134. doi: 10.1016/j.jmaa.2011.07.038. Google Scholar

[32]

J. Wu, Theory and Applications of Partial Functional-Differential Equations,, Springer-Verlag, (1996). doi: 10.1007/978-1-4612-4050-1. Google Scholar

[33]

P. Zhang, Z. Feng and F. Milner, A schistosomiasis model with an age structure in human hosts and its application to treatment strategies,, Math. Biosci., 205 (2007), 83. doi: 10.1016/j.mbs.2006.06.006. Google Scholar

[1]

Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an age-structured population model with two delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 657-676. doi: 10.3934/cpaa.2015.14.657

[2]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[3]

Jixun Chu, Pierre Magal. Hopf bifurcation for a size-structured model with resting phase. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4891-4921. doi: 10.3934/dcds.2013.33.4891

[4]

Hossein Mohebbi, Azim Aminataei, Cameron J. Browne, Mohammad Reza Razvan. Hopf bifurcation of an age-structured virus infection model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 861-885. doi: 10.3934/dcdsb.2018046

[5]

Min He. On continuity in parameters of integrated semigroups. Conference Publications, 2003, 2003 (Special) : 403-412. doi: 10.3934/proc.2003.2003.403

[6]

Rong Liu, Feng-Qin Zhang, Yuming Chen. Optimal contraception control for a nonlinear population model with size structure and a separable mortality. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3603-3618. doi: 10.3934/dcdsb.2016112

[7]

Bedr'Eddine Ainseba. Age-dependent population dynamics diffusive systems. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1233-1247. doi: 10.3934/dcdsb.2004.4.1233

[8]

Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095

[9]

Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure & Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637

[10]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[11]

L. M. Abia, O. Angulo, J.C. López-Marcos. Size-structured population dynamics models and their numerical solutions. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1203-1222. doi: 10.3934/dcdsb.2004.4.1203

[12]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[13]

Miriam Kiessling, Sascha Kurz, Jörg Rambau. The integrated size and price optimization problem. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 669-693. doi: 10.3934/naco.2012.2.669

[14]

Jacques Henry. For which objective is birth process an optimal feedback in age structured population dynamics?. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 107-114. doi: 10.3934/dcdsb.2007.8.107

[15]

Z.-R. He, M.-S. Wang, Z.-E. Ma. Optimal birth control problems for nonlinear age-structured population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 589-594. doi: 10.3934/dcdsb.2004.4.589

[16]

Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265

[17]

Atul Narang, Sergei S. Pilyugin. Toward an Integrated Physiological Theory of Microbial Growth: From Subcellular Variables to Population Dynamics. Mathematical Biosciences & Engineering, 2005, 2 (1) : 169-206. doi: 10.3934/mbe.2005.2.169

[18]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[19]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[20]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]