June  2015, 20(4): 1251-1259. doi: 10.3934/dcdsb.2015.20.1251

Navier--Stokes equations on a rapidly rotating sphere

1. 

Mathematical Sciences, Durham University, Durham DH1 3LE, United Kingdom

Received  March 2014 Revised  October 2014 Published  February 2015

We extend our earlier $\beta$-plane results [al-Jaboori and Wirosoetisno, 2011, DCDS-B 16:687--701] to a rotating sphere. Specifically, we show that the solution of the Navier--Stokes equations on a sphere rotating with angular velocity $1/\epsilon$ becomes zonal in the long time limit, in the sense that the non-zonal component of the energy becomes bounded by $\epsilon M$. Central to our proof is controlling the behaviour of the nonlinear term near resonances. We also show that the global attractor reduces to a single stable steady state when the rotation is fast enough.
Citation: D. Wirosoetisno. Navier--Stokes equations on a rapidly rotating sphere. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1251-1259. doi: 10.3934/dcdsb.2015.20.1251
References:
[1]

M. A. H. Al-Jaboori and D. Wirosoetisno, Navier-Stokes equations on the $\beta$-plane,, Discr. Contin. Dyn. Sys. B, 16 (2011), 687. doi: 10.3934/dcdsb.2011.16.687. Google Scholar

[2]

C. Cao, M. A. Rammaha and E. S. Titi, The Navier-Stokes equations on the rotating 2-$d$ sphere: Gevrey regularity and asymptotic degrees of freedom,, ZAMP, 50 (1999), 341. doi: 10.1007/PL00001493. Google Scholar

[3]

B. Cheng and A. Mahalov, Euler equations on a fast rotating sphere - time-averages and zonal flows,, Eur. J. Mech. B/Fluids, 37 (2013), 48. doi: 10.1016/j.euromechflu.2012.06.001. Google Scholar

[4]

P. Constantin, C. Foias and R. Temam, On the dimension of the attractors in two-dimensional turbulence,, Physica, 30 (1988), 284. doi: 10.1016/0167-2789(88)90022-X. Google Scholar

[5]

C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations,, J. Funct. Anal., 87 (1989), 359. doi: 10.1016/0022-1236(89)90015-3. Google Scholar

[6]

A. A. Il'in and A. N. Filatov, On unique solvability of the Navier-Stokes equations on the two-dimensional sphere,, Soviet Math. Dokl., 38 (1989), 9. Google Scholar

[7]

A. A. Ilyin, Navier-Stokes equations on the rotating sphere. A simple proof of the attractor dimension estimate,, Nonlinearity, 7 (1994), 31. doi: 10.1088/0951-7715/7/1/002. Google Scholar

[8]

A. A. Il'yin, Partly dissipative semigroups generated by the Navier-Stokes system on two-dimensional manifolds, and their attractors,, Russian Acad. Sci. Sb. Math., 78 (1994), 47. doi: 10.1070/SM1994v078n01ABEH003458. Google Scholar

[9]

M. N. Jones, Spherical Harmonics and Tensors for Classical Field Theory,, Research Studies Press, (1985). Google Scholar

[10]

National Institute for Standards and Technology, Digital library of mathematical functions, 2010,, URL , (). Google Scholar

[11]

P. B. Rhines, Jets,, Chaos, 4 (1994), 313. Google Scholar

show all references

References:
[1]

M. A. H. Al-Jaboori and D. Wirosoetisno, Navier-Stokes equations on the $\beta$-plane,, Discr. Contin. Dyn. Sys. B, 16 (2011), 687. doi: 10.3934/dcdsb.2011.16.687. Google Scholar

[2]

C. Cao, M. A. Rammaha and E. S. Titi, The Navier-Stokes equations on the rotating 2-$d$ sphere: Gevrey regularity and asymptotic degrees of freedom,, ZAMP, 50 (1999), 341. doi: 10.1007/PL00001493. Google Scholar

[3]

B. Cheng and A. Mahalov, Euler equations on a fast rotating sphere - time-averages and zonal flows,, Eur. J. Mech. B/Fluids, 37 (2013), 48. doi: 10.1016/j.euromechflu.2012.06.001. Google Scholar

[4]

P. Constantin, C. Foias and R. Temam, On the dimension of the attractors in two-dimensional turbulence,, Physica, 30 (1988), 284. doi: 10.1016/0167-2789(88)90022-X. Google Scholar

[5]

C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations,, J. Funct. Anal., 87 (1989), 359. doi: 10.1016/0022-1236(89)90015-3. Google Scholar

[6]

A. A. Il'in and A. N. Filatov, On unique solvability of the Navier-Stokes equations on the two-dimensional sphere,, Soviet Math. Dokl., 38 (1989), 9. Google Scholar

[7]

A. A. Ilyin, Navier-Stokes equations on the rotating sphere. A simple proof of the attractor dimension estimate,, Nonlinearity, 7 (1994), 31. doi: 10.1088/0951-7715/7/1/002. Google Scholar

[8]

A. A. Il'yin, Partly dissipative semigroups generated by the Navier-Stokes system on two-dimensional manifolds, and their attractors,, Russian Acad. Sci. Sb. Math., 78 (1994), 47. doi: 10.1070/SM1994v078n01ABEH003458. Google Scholar

[9]

M. N. Jones, Spherical Harmonics and Tensors for Classical Field Theory,, Research Studies Press, (1985). Google Scholar

[10]

National Institute for Standards and Technology, Digital library of mathematical functions, 2010,, URL , (). Google Scholar

[11]

P. B. Rhines, Jets,, Chaos, 4 (1994), 313. Google Scholar

[1]

Mustafa A. H. Al-Jaboori, D. Wirosoetisno. Navier--Stokes equations on the $\beta$-plane. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 687-701. doi: 10.3934/dcdsb.2011.16.687

[2]

Tian Ma, Shouhong Wang. Asymptotic structure for solutions of the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 189-204. doi: 10.3934/dcds.2004.11.189

[3]

Luca Bisconti, Davide Catania. Remarks on global attractors for the 3D Navier--Stokes equations with horizontal filtering. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 59-75. doi: 10.3934/dcdsb.2015.20.59

[4]

Patrick Penel, Milan Pokorný. Improvement of some anisotropic regularity criteria for the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1401-1407. doi: 10.3934/dcdss.2013.6.1401

[5]

C. Foias, M. S Jolly, O. P. Manley. Recurrence in the 2-$D$ Navier--Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 253-268. doi: 10.3934/dcds.2004.10.253

[6]

Milan Pokorný, Piotr B. Mucha. 3D steady compressible Navier--Stokes equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 151-163. doi: 10.3934/dcdss.2008.1.151

[7]

Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611

[8]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[9]

Yutaka Tsuzuki. Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains. Conference Publications, 2015, 2015 (special) : 1079-1088. doi: 10.3934/proc.2015.1079

[10]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[11]

Yuming Qin, T. F. Ma, M. M. Cavalcanti, D. Andrade. Exponential stability in $H^4$ for the Navier--Stokes equations of compressible and heat conductive fluid. Communications on Pure & Applied Analysis, 2005, 4 (3) : 635-664. doi: 10.3934/cpaa.2005.4.635

[12]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[13]

Shuguang Shao, Shu Wang, Wen-Qing Xu, Bin Han. Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle. Kinetic & Related Models, 2016, 9 (4) : 767-776. doi: 10.3934/krm.2016015

[14]

Reinhard Farwig, Ronald B. Guenther, Enrique A. Thomann, Šárka Nečasová. The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 511-529. doi: 10.3934/dcds.2014.34.511

[15]

Bo You. Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2283-2298. doi: 10.3934/cpaa.2019103

[16]

Alexei Ilyin, Kavita Patni, Sergey Zelik. Upper bounds for the attractor dimension of damped Navier-Stokes equations in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2085-2102. doi: 10.3934/dcds.2016.36.2085

[17]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[18]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[19]

Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure & Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609

[20]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]