June  2015, 20(4): 1117-1134. doi: 10.3934/dcdsb.2015.20.1117

Dynamics of the density dependent and nonautonomous predator-prey system with Beddington-DeAngelis functional response

1. 

Department of Mathematics and Information, Henan University of, Economics and Law, Zhengzhou, China

2. 

College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 2525258

Received  March 2014 Revised  June 2014 Published  February 2015

We investigate the dynamics of a non-autonomous and density dependent predator-prey system with Beddington-DeAngelis functional response, where not only the prey density dependence but also the predator density dependence are considered. First, we derive a sufficient condition of permanence by comparison theorem, at the same time we propose a weaker condition ensuring some positive bounded set to be positive invariant. Next, we obtain two existence conditions for positive periodic solution by Brouwer fixed-point theorem and by continuation theorem, where the second condition is weaker than the first and gives the existence range of periodic solution. Further we show the global attractivity of the bounded positive solution by constructing Lyapunov function. Similarly, we have sufficient condition of global attractivity of boundary periodic solution.
Citation: Haiyin Li, Yasuhiro Takeuchi. Dynamics of the density dependent and nonautonomous predator-prey system with Beddington-DeAngelis functional response. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1117-1134. doi: 10.3934/dcdsb.2015.20.1117
References:
[1]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence,, J. Theoret. Biol., 139 (1989), 311. doi: 10.1016/S0022-5193(89)80211-5. Google Scholar

[2]

D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect: Stability Theory and Applications,, Ellis Horwood Limited, (1989). Google Scholar

[3]

D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications,, Longman Scientific and Technical, (1993). Google Scholar

[4]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, J. Animal Ecol., 44 (1975), 331. doi: 10.2307/3866. Google Scholar

[5]

L. E. J. Brouwer, Über Abbildung von Mannigfaltigkeiten,, Math. Ann., 71 (1911), 97. Google Scholar

[6]

R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 257 (2001), 206. doi: 10.1006/jmaa.2000.7343. Google Scholar

[7]

R. S. Cantrell, C. Cosner and S. G. Ruan, Intraspecific interference and consumer-resource dynamics,, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 527. doi: 10.3934/dcdsb.2004.4.527. Google Scholar

[8]

F. Chen, Y. Chen and J. Shi, Stability of the boundary solution of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 344 (2008), 1057. doi: 10.1016/j.jmaa.2008.03.050. Google Scholar

[9]

P. H. Crowley and E. K. Martin, Functional response and interference within and between year classes of a dragonfly population,, J. N. Am. Benthol. Soc., 8 (1989), 211. doi: 10.2307/1467324. Google Scholar

[10]

J. Cui and Y. Takeuchi, Permanence, extinction and periodic solution of predator-prey system with Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 317 (2006), 464. doi: 10.1016/j.jmaa.2005.10.011. Google Scholar

[11]

D. L. DeAngelis, R. A. Goldstein and R. V. Neill, A model for trophic interaction,, Ecology, 56 (1975), 881. Google Scholar

[12]

D. T. Dimitrov and H. V. Kojouharov, Complete mathematical analysis of predator-prey models with linear prey growth and Beddington-DeAngelis functional response,, Appl. math. Comput., 162 (2005), 523. doi: 10.1016/j.amc.2003.12.106. Google Scholar

[13]

M. Fan and Y. Kuang, Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 295 (2004), 15. doi: 10.1016/j.jmaa.2004.02.038. Google Scholar

[14]

R. E. Gaines and R. M. Mawhin, Coincidence Degree and Nonlinear Differential Equations,, Springer-Verlag, (1977). Google Scholar

[15]

M. P. Hassell and C. C. Varley, New inductive population model for insect parasites and its bearing on biological control,, Nature, 223 (1969), 1133. doi: 10.1038/2231133a0. Google Scholar

[16]

C. S. Holling, The components of predation as revealed by a study of small mammal predation of European pine sawfly,, Canad. Entomologist, 91 (1959), 291. doi: 10.4039/Ent91293-5. Google Scholar

[17]

C. S. Holling, Some characteristics of simple types of predation and parasitism,, Canad. Entomologist, 91 (1959), 382. doi: 10.4039/Ent91385-7. Google Scholar

[18]

T. W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 281 (2003), 395. doi: 10.1016/S0022-247X(02)00395-5. Google Scholar

[19]

T. W. Hwang, Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 290 (2004), 113. doi: 10.1016/j.jmaa.2003.09.073. Google Scholar

[20]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, American Mathematical Society, (2011). doi: 10.1090/surv/176. Google Scholar

[21]

P. Kratina, M. Vos, A. Bateman and B. R. Anholt, Functional response modified by predator density,, Oecologia, 159 (2009), 425. doi: 10.1007/s00442-008-1225-5. Google Scholar

[22]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system,, J. Math. Biol., 36 (1998), 389. doi: 10.1007/s002850050105. Google Scholar

[23]

H. Li and Y. Takeuchi, Dynamics of the density dependent predator-prey system with Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 374 (2011), 644. doi: 10.1016/j.jmaa.2010.08.029. Google Scholar

[24]

S. Liu and E. Beretta, A stage-structured predator-prey model of Beddington-DeAngelis type,, SIAM J. Appl. Math., 66 (2006), 1101. doi: 10.1137/050630003. Google Scholar

[25]

Z. Liu and R. Yuan, Stability and bifurcation in a delayed predator-prey system with Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 296 (2004), 521. doi: 10.1016/j.jmaa.2004.04.051. Google Scholar

[26]

Z. P. Qiu, J. Yu and Y. Zou, The asymptotic behavior of a chemostat model with the Beddington-DeAngelis functional response,, Math. Biosci., 187 (2004), 175. doi: 10.1016/j.mbs.2003.10.001. Google Scholar

show all references

References:
[1]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence,, J. Theoret. Biol., 139 (1989), 311. doi: 10.1016/S0022-5193(89)80211-5. Google Scholar

[2]

D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect: Stability Theory and Applications,, Ellis Horwood Limited, (1989). Google Scholar

[3]

D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications,, Longman Scientific and Technical, (1993). Google Scholar

[4]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, J. Animal Ecol., 44 (1975), 331. doi: 10.2307/3866. Google Scholar

[5]

L. E. J. Brouwer, Über Abbildung von Mannigfaltigkeiten,, Math. Ann., 71 (1911), 97. Google Scholar

[6]

R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 257 (2001), 206. doi: 10.1006/jmaa.2000.7343. Google Scholar

[7]

R. S. Cantrell, C. Cosner and S. G. Ruan, Intraspecific interference and consumer-resource dynamics,, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 527. doi: 10.3934/dcdsb.2004.4.527. Google Scholar

[8]

F. Chen, Y. Chen and J. Shi, Stability of the boundary solution of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 344 (2008), 1057. doi: 10.1016/j.jmaa.2008.03.050. Google Scholar

[9]

P. H. Crowley and E. K. Martin, Functional response and interference within and between year classes of a dragonfly population,, J. N. Am. Benthol. Soc., 8 (1989), 211. doi: 10.2307/1467324. Google Scholar

[10]

J. Cui and Y. Takeuchi, Permanence, extinction and periodic solution of predator-prey system with Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 317 (2006), 464. doi: 10.1016/j.jmaa.2005.10.011. Google Scholar

[11]

D. L. DeAngelis, R. A. Goldstein and R. V. Neill, A model for trophic interaction,, Ecology, 56 (1975), 881. Google Scholar

[12]

D. T. Dimitrov and H. V. Kojouharov, Complete mathematical analysis of predator-prey models with linear prey growth and Beddington-DeAngelis functional response,, Appl. math. Comput., 162 (2005), 523. doi: 10.1016/j.amc.2003.12.106. Google Scholar

[13]

M. Fan and Y. Kuang, Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 295 (2004), 15. doi: 10.1016/j.jmaa.2004.02.038. Google Scholar

[14]

R. E. Gaines and R. M. Mawhin, Coincidence Degree and Nonlinear Differential Equations,, Springer-Verlag, (1977). Google Scholar

[15]

M. P. Hassell and C. C. Varley, New inductive population model for insect parasites and its bearing on biological control,, Nature, 223 (1969), 1133. doi: 10.1038/2231133a0. Google Scholar

[16]

C. S. Holling, The components of predation as revealed by a study of small mammal predation of European pine sawfly,, Canad. Entomologist, 91 (1959), 291. doi: 10.4039/Ent91293-5. Google Scholar

[17]

C. S. Holling, Some characteristics of simple types of predation and parasitism,, Canad. Entomologist, 91 (1959), 382. doi: 10.4039/Ent91385-7. Google Scholar

[18]

T. W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 281 (2003), 395. doi: 10.1016/S0022-247X(02)00395-5. Google Scholar

[19]

T. W. Hwang, Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 290 (2004), 113. doi: 10.1016/j.jmaa.2003.09.073. Google Scholar

[20]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, American Mathematical Society, (2011). doi: 10.1090/surv/176. Google Scholar

[21]

P. Kratina, M. Vos, A. Bateman and B. R. Anholt, Functional response modified by predator density,, Oecologia, 159 (2009), 425. doi: 10.1007/s00442-008-1225-5. Google Scholar

[22]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system,, J. Math. Biol., 36 (1998), 389. doi: 10.1007/s002850050105. Google Scholar

[23]

H. Li and Y. Takeuchi, Dynamics of the density dependent predator-prey system with Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 374 (2011), 644. doi: 10.1016/j.jmaa.2010.08.029. Google Scholar

[24]

S. Liu and E. Beretta, A stage-structured predator-prey model of Beddington-DeAngelis type,, SIAM J. Appl. Math., 66 (2006), 1101. doi: 10.1137/050630003. Google Scholar

[25]

Z. Liu and R. Yuan, Stability and bifurcation in a delayed predator-prey system with Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 296 (2004), 521. doi: 10.1016/j.jmaa.2004.04.051. Google Scholar

[26]

Z. P. Qiu, J. Yu and Y. Zou, The asymptotic behavior of a chemostat model with the Beddington-DeAngelis functional response,, Math. Biosci., 187 (2004), 175. doi: 10.1016/j.mbs.2003.10.001. Google Scholar

[1]

Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215

[2]

Renji Han, Binxiang Dai, Lin Wang. Delay induced spatiotemporal patterns in a diffusive intraguild predation model with Beddington-DeAngelis functional response. Mathematical Biosciences & Engineering, 2018, 15 (3) : 595-627. doi: 10.3934/mbe.2018027

[3]

Sze-Bi Hsu, Shigui Ruan, Ting-Hui Yang. On the dynamics of two-consumers-one-resource competing systems with Beddington-DeAngelis functional response. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2331-2353. doi: 10.3934/dcdsb.2013.18.2331

[4]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[5]

Seong Lee, Inkyung Ahn. Diffusive predator-prey models with stage structure on prey and beddington-deangelis functional responses. Communications on Pure & Applied Analysis, 2017, 16 (2) : 427-442. doi: 10.3934/cpaa.2017022

[6]

Walid Abid, Radouane Yafia, M.A. Aziz-Alaoui, Habib Bouhafa, Azgal Abichou. Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional type. Evolution Equations & Control Theory, 2015, 4 (2) : 115-129. doi: 10.3934/eect.2015.4.115

[7]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[8]

Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175

[9]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[10]

Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267

[11]

Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

[12]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[13]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[14]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[15]

Jian Zu, Wendi Wang, Bo Zu. Evolutionary dynamics of prey-predator systems with Holling type II functional response. Mathematical Biosciences & Engineering, 2007, 4 (2) : 221-237. doi: 10.3934/mbe.2007.4.221

[16]

Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857

[17]

E. González-Olivares, B. González-Yañez, Eduardo Sáez, I. Szántó. On the number of limit cycles in a predator prey model with non-monotonic functional response. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 525-534. doi: 10.3934/dcdsb.2006.6.525

[18]

Shuping Li, Weinian Zhang. Bifurcations of a discrete prey-predator model with Holling type II functional response. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 159-176. doi: 10.3934/dcdsb.2010.14.159

[19]

Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228

[20]

Jing-An Cui, Xinyu Song. Permanence of predator-prey system with stage structure. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 547-554. doi: 10.3934/dcdsb.2004.4.547

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]