2014, 19(2): 353-372. doi: 10.3934/dcdsb.2014.19.353

Isotropic realizability of electric fields around critical points

1. 

Institut de Recherche Mathématique de Rennes & INSA de Rennes, 20 avenue des Buttes de Cöesmes, CS 70839, 35708 Rennes Cedex 7, France

Received  June 2013 Revised  September 2013 Published  February 2014

In this paper we study the isotropic realizability of a given regular gradient field $\nabla u$ as an electric field, namely when $u$ is solution to the equation div$\left(\sigma\nabla u\right)=0$ for some isotropic conductivity $\sigma>0$. The case of a smooth function $u$ without critical point was investigated in [7] thanks to a dynamical system approach which yields a global isotropic realizability result in $\mathbb{R}^d$. The presence of a critical point $x^*$ needs a specific treatment according to the behavior of the gradient flow in the neighborhood of $x^*$. The case where the hessian matrix $\nabla^2 u(x^*)$ is invertible with both positive and negative eigenvalues is the most favorable: the anisotropic realizability is a consequence of Morse's lemma, while the Hadamard-Perron theorem leads us to a characterization of the isotropic realizability around $x^*$ through some boundedness condition involving the laplacian of $u$ along the gradient flow. When the matrix $\nabla^2 u(x^*)$ has $d$ positive eigenvalues or $d$ negative eigenvalues, we get a strong maximum principle under the same boundedness condition. However, when the matrix $\nabla^2 u(x^*)$ is not invertible, the derivation of the isotropic realizability is much more intricate: the Hartman-Wintner theorem gives necessary conditions for the isotropic realizability in dimension two, while the dynamical system approach provides a criterion of non realizability in any dimension. The two methods are illustrated by a two-dimensional and a three-dimensional example.
Citation: Marc Briane. Isotropic realizability of electric fields around critical points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 353-372. doi: 10.3934/dcdsb.2014.19.353
References:
[1]

G. Alessandrini, Critical points of solutions of elliptic equations in two variables,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14 (1987), 229.

[2]

G. Alessandrini & R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions,, SIAM J. Math. Anal., 25 (1994), 1259. doi: 10.1137/S0036141093249080.

[3]

G. Alessandrini & V. Nesi, Univalent $\sigma$-harmonic mappings,, Arch. Rational Mech. Anal., 158 (2001), 155. doi: 10.1007/PL00004242.

[4]

D. V. Anosov, S. K. Aranson, V. I. Arnold, I. U. Bronshtejn and V. Z. Grines, Dynamical Systems. I,, translated from the Russian, 1 (1988). doi: 10.1007/978-3-642-61551-1.

[5]

V. I. Arnold, Ordinary Differential Equations,, translated from the third Russian edition by R. Cooke, (1992).

[6]

P. Bauman, A. Marini and V. Nesi, Univalent solutions of an elliptic system of partial differential equations arising in homogenization,, Indiana Univ. Math. J., 50 (2001), 747. doi: 10.1512/iumj.2001.50.1832.

[7]

M. Briane, G. W. Milton & A. Treibergs, Which electric fields are realizable in conducting materials?, to appear in Math. Mod. Num. Anal., (1301).

[8]

D. Gilbarg & N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, reprint of the 1998 edition, (1998).

[9]

P. Hartman & A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations (I),, Amer. J. Math., 75 (1953), 449. doi: 10.2307/2372496.

[10]

M. Hirsch, S. Smale & R. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos,, second edition, 60 (2004).

[11]

J. Milnor, Morse Theory,, based on lecture notes by M. Spivak and R. Wells, 51 (1963).

[12]

F. Schulz, Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions,, Lecture Notes in Mathematics 1445, 1445 (1990).

show all references

References:
[1]

G. Alessandrini, Critical points of solutions of elliptic equations in two variables,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14 (1987), 229.

[2]

G. Alessandrini & R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions,, SIAM J. Math. Anal., 25 (1994), 1259. doi: 10.1137/S0036141093249080.

[3]

G. Alessandrini & V. Nesi, Univalent $\sigma$-harmonic mappings,, Arch. Rational Mech. Anal., 158 (2001), 155. doi: 10.1007/PL00004242.

[4]

D. V. Anosov, S. K. Aranson, V. I. Arnold, I. U. Bronshtejn and V. Z. Grines, Dynamical Systems. I,, translated from the Russian, 1 (1988). doi: 10.1007/978-3-642-61551-1.

[5]

V. I. Arnold, Ordinary Differential Equations,, translated from the third Russian edition by R. Cooke, (1992).

[6]

P. Bauman, A. Marini and V. Nesi, Univalent solutions of an elliptic system of partial differential equations arising in homogenization,, Indiana Univ. Math. J., 50 (2001), 747. doi: 10.1512/iumj.2001.50.1832.

[7]

M. Briane, G. W. Milton & A. Treibergs, Which electric fields are realizable in conducting materials?, to appear in Math. Mod. Num. Anal., (1301).

[8]

D. Gilbarg & N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, reprint of the 1998 edition, (1998).

[9]

P. Hartman & A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations (I),, Amer. J. Math., 75 (1953), 449. doi: 10.2307/2372496.

[10]

M. Hirsch, S. Smale & R. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos,, second edition, 60 (2004).

[11]

J. Milnor, Morse Theory,, based on lecture notes by M. Spivak and R. Wells, 51 (1963).

[12]

F. Schulz, Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions,, Lecture Notes in Mathematics 1445, 1445 (1990).

[1]

Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075

[2]

Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phase-field model describing grain growth. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2227-2246. doi: 10.3934/dcdsb.2014.19.2227

[3]

Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence, Part 1: Isotropic turbulence. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 155-168. doi: 10.3934/dcdss.2011.4.155

[4]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[5]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[6]

Anna Maria Candela, Giuliana Palmieri. Some abstract critical point theorems and applications. Conference Publications, 2009, 2009 (Special) : 133-142. doi: 10.3934/proc.2009.2009.133

[7]

Wei Lv, Ruirui Sui. Optimality of piecewise thermal conductivity in a snow-ice thermodynamic system. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 47-57. doi: 10.3934/naco.2015.5.47

[8]

Lucas C. F. Ferreira, Everaldo Medeiros, Marcelo Montenegro. An elliptic system and the critical hyperbola. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1169-1182. doi: 10.3934/cpaa.2015.14.1169

[9]

Urszula Foryś, Yuri Kheifetz, Yuri Kogan. Critical-Point Analysis For Three-Variable Cancer Angiogenesis Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 511-525. doi: 10.3934/mbe.2005.2.511

[10]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[11]

J. K. Krottje. On the dynamics of a mixed parabolic-gradient system . Communications on Pure & Applied Analysis, 2003, 2 (4) : 521-537. doi: 10.3934/cpaa.2003.2.521

[12]

Frank Jochmann. Decay of the polarization field in a Maxwell Bloch system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 663-676. doi: 10.3934/dcds.2003.9.663

[13]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[14]

Michael Cranston, Benjamin Gess, Michael Scheutzow. Weak synchronization for isotropic flows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3003-3014. doi: 10.3934/dcdsb.2016084

[15]

Jesse Berwald, Marian Gidea. Critical transitions in a model of a genetic regulatory system. Mathematical Biosciences & Engineering, 2014, 11 (4) : 723-740. doi: 10.3934/mbe.2014.11.723

[16]

Tong Li, Hailiang Liu. Critical thresholds in a relaxation system with resonance of characteristic speeds. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 511-521. doi: 10.3934/dcds.2009.24.511

[17]

Wenjing Chen, Louis Dupaigne, Marius Ghergu. A new critical curve for the Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2469-2479. doi: 10.3934/dcds.2014.34.2469

[18]

Xavier Perrot, Xavier Carton. Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 971-995. doi: 10.3934/dcdsb.2009.11.971

[19]

Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873

[20]

Kyungwoo Song, Yuxi Zheng. Semi-hyperbolic patches of solutions of the pressure gradient system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1365-1380. doi: 10.3934/dcds.2009.24.1365

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]