November  2014, 19(9): 2739-2766. doi: 10.3934/dcdsb.2014.19.2739

Transport semigroup associated to positive boundary conditions of unit norm: A Dyson-Phillips approach

1. 

Università degli Studi di Udine, Dipartimento di Ingegneria Civile, via delle Scienze 208, 33100 Udine, Italy

2. 

Università degli Studi di Torino & Collegio Carlo Alberto, Department of Economics and Statistics, Corso Unione Sovietica, 218/bis, 10134 Torino, Italy

Received  November 2013 Revised  May 2014 Published  September 2014

We revisit our study of general transport operator with general force field and general invariant measure by considering, in the $L^1$ setting, the linear transport operator $\mathcal{T}_H$ associated to a linear and positive boundary operator $H$ of unit norm. It is known that in this case an extension of $\mathcal{T}_H$ generates a substochastic (i.e. positive contraction) $C_0$-semigroup $(V_H(t))_{t\geq 0}$. We show here that $(V_H(t))_{t\geq 0}$ is the smallest substochastic $C_0$-semigroup with the above mentioned property and provides a representation of $(V_H(t))_{t \geq 0}$ as the sum of an expansion series similar to Dyson-Phillips series. We develop an honesty theory for such boundary perturbations that allows to consider the honesty of trajectories on subintervals $J \subseteq [0,\infty)$. New necessary and sufficient conditions for a trajectory to be honest are given in terms of the aforementioned series expansion.
Citation: Luisa Arlotti, Bertrand Lods. Transport semigroup associated to positive boundary conditions of unit norm: A Dyson-Phillips approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2739-2766. doi: 10.3934/dcdsb.2014.19.2739
References:
[1]

L. Arlotti, J. Banasiak and B. Lods, A new approach to transport equations associated to a regular field: trace results and well-posedness,, Mediterr. J. Math., 6 (2009), 367. doi: 10.1007/s00009-009-0022-7. Google Scholar

[2]

L. Arlotti, J. Banasiak and B. Lods, On general transport equations with abstract boundary conditions. The case of divergence free force field,, Mediterr. J. Math., 8 (2011), 1. doi: 10.1007/s00009-010-0061-0. Google Scholar

[3]

L. Arlotti, Explicit transport semigroup associated to abstract boundary conditions,, Discrete Contin. Dyn. Syst., I (2011), 102. Google Scholar

[4]

L. Arlotti, Boundary conditions for streaming operator in a bounded convex body,, Transp. Theory Stat. Phys., 15 (1986), 959. doi: 10.1080/00411458608212725. Google Scholar

[5]

L. Arlotti and B. Lods, Substochastic semigroups for transport equations with conservative boundary conditions,, J. Evolution Equations, 5 (2005), 485. doi: 10.1007/s00028-005-0209-8. Google Scholar

[6]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, On perturbed substochastic semigroups in abstract state spaces,, Z. Anal. Anwend., 30 (2011), 457. doi: 10.4171/ZAA/1444. Google Scholar

[7]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations,, Commun. Pure Appl. Anal., 13 (2014), 729. doi: 10.3934/cpaa.2014.13.729. Google Scholar

[8]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, On perturbed substochastic once integrated semigroups in abstract state spaces,, in preparation., (). Google Scholar

[9]

J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications,, Springer Monographs in Mathematics, (2006). Google Scholar

[10]

C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation, application à l'équation de transport,, Ann. Sci. École Norm. Sup., 3 (1970), 185. Google Scholar

[11]

R. Beals and V. Protopopescu, Abstract time-dependent transport equations,, J. Math. Anal. Appl., 121 (1987), 370. doi: 10.1016/0022-247X(87)90252-6. Google Scholar

[12]

M. Boulanouar, New results in abstract time-dependent transport equations,, Transport Theory Statist. Phys., 40 (2011), 85. doi: 10.1080/00411450.2011.603402. Google Scholar

[13]

C. Cercignani, The Boltzmann Equation and its Applications,, Springer Verlag, (1988). doi: 10.1007/978-1-4612-1039-9. Google Scholar

[14]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory,, Springer Verlag, (1982). doi: 10.1007/978-1-4615-6927-5. Google Scholar

[15]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6: Evolution Problems II,, Berlin, (2000). doi: 10.1007/978-3-642-58004-8. Google Scholar

[16]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer, (2000). Google Scholar

[17]

B. Lods, Semigroup generation properties of streaming operators with noncontractive boundary conditions,, Math. Comput. Modelling, 42 (2005), 1441. doi: 10.1016/j.mcm.2004.12.007. Google Scholar

[18]

M. Mokhtar-Kharroubi, On collisionless transport semigroups with boundary operators of norm one,, J. Evolution Equations, 8 (2008), 327. doi: 10.1007/s00028-007-0360-5. Google Scholar

[19]

M. Mokhtar-Kharroubi and J.Voigt, On honesty of perturbed substochastic $C_0$-semigroups in $L^1$-spaces,, J. Operator Theory, 64 (2010), 131. Google Scholar

[20]

J. Voigt, Functional Analytic Treatment of the Initial Boundary Value for Collisionless Gases,, München, (1981). Google Scholar

show all references

References:
[1]

L. Arlotti, J. Banasiak and B. Lods, A new approach to transport equations associated to a regular field: trace results and well-posedness,, Mediterr. J. Math., 6 (2009), 367. doi: 10.1007/s00009-009-0022-7. Google Scholar

[2]

L. Arlotti, J. Banasiak and B. Lods, On general transport equations with abstract boundary conditions. The case of divergence free force field,, Mediterr. J. Math., 8 (2011), 1. doi: 10.1007/s00009-010-0061-0. Google Scholar

[3]

L. Arlotti, Explicit transport semigroup associated to abstract boundary conditions,, Discrete Contin. Dyn. Syst., I (2011), 102. Google Scholar

[4]

L. Arlotti, Boundary conditions for streaming operator in a bounded convex body,, Transp. Theory Stat. Phys., 15 (1986), 959. doi: 10.1080/00411458608212725. Google Scholar

[5]

L. Arlotti and B. Lods, Substochastic semigroups for transport equations with conservative boundary conditions,, J. Evolution Equations, 5 (2005), 485. doi: 10.1007/s00028-005-0209-8. Google Scholar

[6]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, On perturbed substochastic semigroups in abstract state spaces,, Z. Anal. Anwend., 30 (2011), 457. doi: 10.4171/ZAA/1444. Google Scholar

[7]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations,, Commun. Pure Appl. Anal., 13 (2014), 729. doi: 10.3934/cpaa.2014.13.729. Google Scholar

[8]

L. Arlotti, B. Lods and M. Mokhtar-Kharroubi, On perturbed substochastic once integrated semigroups in abstract state spaces,, in preparation., (). Google Scholar

[9]

J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications,, Springer Monographs in Mathematics, (2006). Google Scholar

[10]

C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation, application à l'équation de transport,, Ann. Sci. École Norm. Sup., 3 (1970), 185. Google Scholar

[11]

R. Beals and V. Protopopescu, Abstract time-dependent transport equations,, J. Math. Anal. Appl., 121 (1987), 370. doi: 10.1016/0022-247X(87)90252-6. Google Scholar

[12]

M. Boulanouar, New results in abstract time-dependent transport equations,, Transport Theory Statist. Phys., 40 (2011), 85. doi: 10.1080/00411450.2011.603402. Google Scholar

[13]

C. Cercignani, The Boltzmann Equation and its Applications,, Springer Verlag, (1988). doi: 10.1007/978-1-4612-1039-9. Google Scholar

[14]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory,, Springer Verlag, (1982). doi: 10.1007/978-1-4615-6927-5. Google Scholar

[15]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6: Evolution Problems II,, Berlin, (2000). doi: 10.1007/978-3-642-58004-8. Google Scholar

[16]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer, (2000). Google Scholar

[17]

B. Lods, Semigroup generation properties of streaming operators with noncontractive boundary conditions,, Math. Comput. Modelling, 42 (2005), 1441. doi: 10.1016/j.mcm.2004.12.007. Google Scholar

[18]

M. Mokhtar-Kharroubi, On collisionless transport semigroups with boundary operators of norm one,, J. Evolution Equations, 8 (2008), 327. doi: 10.1007/s00028-007-0360-5. Google Scholar

[19]

M. Mokhtar-Kharroubi and J.Voigt, On honesty of perturbed substochastic $C_0$-semigroups in $L^1$-spaces,, J. Operator Theory, 64 (2010), 131. Google Scholar

[20]

J. Voigt, Functional Analytic Treatment of the Initial Boundary Value for Collisionless Gases,, München, (1981). Google Scholar

[1]

Robert Denk, Yoshihiro Shibata. Generation of semigroups for the thermoelastic plate equation with free boundary conditions. Evolution Equations & Control Theory, 2019, 8 (2) : 301-313. doi: 10.3934/eect.2019016

[2]

Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic & Related Models, 2017, 10 (2) : 329-371. doi: 10.3934/krm.2017014

[3]

Luisa Arlotti. Explicit transport semigroup associated to abstract boundary conditions. Conference Publications, 2011, 2011 (Special) : 102-111. doi: 10.3934/proc.2011.2011.102

[4]

Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529

[5]

Igor Shevchenko, Barbara Kaltenbacher. Absorbing boundary conditions for the Westervelt equation. Conference Publications, 2015, 2015 (special) : 1000-1008. doi: 10.3934/proc.2015.1000

[6]

Luisa Arlotti, Bertrand Lods, Mustapha Mokhtar-Kharroubi. Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 729-771. doi: 10.3934/cpaa.2014.13.729

[7]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[8]

Antonio Suárez. A logistic equation with degenerate diffusion and Robin boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1255-1267. doi: 10.3934/cpaa.2008.7.1255

[9]

Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175

[10]

Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems & Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034

[11]

Alassane Niang. Boundary regularity for a degenerate elliptic equation with mixed boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (1) : 107-128. doi: 10.3934/cpaa.2019007

[12]

Klemens Fellner, Stefanie Sonner, Bao Quoc Tang, Do Duc Thuan. Stabilisation by noise on the boundary for a Chafee-Infante equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4055-4078. doi: 10.3934/dcdsb.2019050

[13]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems & Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749

[14]

Stéphane Brull, Pierre Charrier, Luc Mieussens. Gas-surface interaction and boundary conditions for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 219-251. doi: 10.3934/krm.2014.7.219

[15]

Tae Gab Ha. On the viscoelastic equation with Balakrishnan-Taylor damping and acoustic boundary conditions. Evolution Equations & Control Theory, 2018, 7 (2) : 281-291. doi: 10.3934/eect.2018014

[16]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[17]

Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231

[18]

Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations & Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631

[19]

Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

[20]

Andrzej Nowakowski. Variational analysis of semilinear plate equation with free boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3133-3154. doi: 10.3934/dcds.2015.35.3133

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]