2014, 19(1): 27-53. doi: 10.3934/dcdsb.2014.19.27

Spectral minimal partitions of a sector

1. 

IRMAR, ENS Cachan Bretagne, Univ. Rennes 1, CNRS, UEB, av Robert Schuman, F-35170 Bruz

2. 

Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, Bât. 425, F-91405 Orsay Cedex, France

Received  December 2012 Revised  July 2013 Published  December 2013

In this article, we are interested in determining spectral minimal $k$-partitions for angular sectors. We first deal with the nodal cases for which we can determine explicitly the minimal partitions. Then, in the case where the minimal partitions are not nodal domains of eigenfunctions of the Dirichlet Laplacian, we analyze the possible topologies of these minimal partitions. We first exhibit symmetric minimal partitions by using a mixed Dirichlet-Neumann Laplacian and then use a double covering approach to catch non symmetric candidates. In this way, we improve the known estimates of the energy associated with the minimal partitions.
Citation: Virginie Bonnaillie-Noël, Corentin Léna. Spectral minimal partitions of a sector. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 27-53. doi: 10.3934/dcdsb.2014.19.27
References:
[1]

Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory,, Phys. Rev., 115 (1959), 485. doi: 10.1103/PhysRev.115.485.

[2]

B. Alziary, J. Fleckinger-Pellé and P. Takáč, Eigenfunctions and Hardy inequalities for a magnetic Schrödinger operator in $\mathbbR^2$,, Math. Methods Appl. Sci., 26 (2003), 1093. doi: 10.1002/mma.402.

[3]

V. Bonnaillie-Noël and B. Helffer, Numerical analysis of nodal sets for eigenvalues of Aharonov-Bohm Hamiltonians on the square with application to minimal partitions,, Exp. Math., 20 (2011), 304. doi: 10.1080/10586458.2011.565240.

[4]

V. Bonnaillie-Noël, B. Helffer and T. Hoffmann-Ostenhof, Aharonov-Bohm Hamiltonians, isospectrality and minimal partitions,, J. Phys. A, 42 (2009). doi: 10.1088/1751-8113/42/18/185203.

[5]

V. Bonnaillie-Noël, B. Helffer and G. Vial, Numerical simulations for nodal domains and spectral minimal partitions,, ESAIM Control Optim. Calc. Var., 16 (2010), 221. doi: 10.1051/cocv:2008074.

[6]

D. Bucur, G. Buttazzo and A. Henrot, Existence results for some optimal partition problems,, Adv. Math. Sci. Appl., 8 (1998), 571.

[7]

M. Conti, S. Terracini and G. Verzini, An optimal partition problem related to nonlinear eigenvalues,, J. Funct. Anal., 198 (2003), 160. doi: 10.1016/S0022-1236(02)00105-2.

[8]

M. Conti, S. Terracini and G. Verzini, On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulae,, Calc. Var. Partial Differential Equations, 22 (2005), 45. doi: 10.1007/s00526-004-0266-9.

[9]

M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems,, Indiana Univ. Math. J., 54 (2005), 779. doi: 10.1512/iumj.2005.54.2506.

[10]

R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I,, Interscience Publishers, (1953).

[11]

E. C. M. Crooks, E. N. Dancer and D. Hilhorst, On long-time dynamics for competition-diffusion systems with inhomogeneous Dirichlet boundary conditions,, Topol. Methods Nonlinear Anal., 30 (2007), 1.

[12]

NIST Digital Library of Mathematical Functions, Online companion to [20], Release 1.0.5 of 2012-10-01., Available from: , ().

[13]

B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and M. P. Owen, Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains,, Comm. Math. Phys., 202 (1999), 629. doi: 10.1007/s002200050599.

[14]

B. Helffer and T. Hoffmann-Ostenhof, On minimal partitions: New properties and applications to the disk,, in Spectrum and Dynamics, (2010), 119.

[15]

B. Helffer and T. Hoffmann-Ostenhof, Minimal partitions for anisotropic tori,, J. Spectr. Theory, (2013).

[16]

B. Helffer and T. Hoffmann-Ostenhof, On a magnetic characterization of spectral minimal partitions,, Journal of the European Mathematical Society, (2013). doi: 10.4171/JEMS/415.

[17]

B. Helffer, T. Hoffmann-Ostenhof and S. Terracini, Nodal domains and spectral minimal partitions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 101. doi: 10.1016/j.anihpc.2007.07.004.

[18]

B. Helffer, T. Hoffmann-Ostenhof and S. Terracini, On spectral minimal partitions: the case of the sphere,, in Around the Research of Vladimir Maz'ya. III, (2010), 153. doi: 10.1007/978-1-4419-1345-6_6.

[19]

D. Martin, Mélina, Bibliothèque de Calculs éléments Finis,, 2007. Available from: , ().

[20]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions,, Cambridge University Press, (2010).

[21]

K. Pankrashkin and S. Richard, Spectral and scattering theory for the Aharonov-Bohm operators,, Rev. Math. Phys., 23 (2011), 53. doi: 10.1142/S0129055X11004205.

show all references

References:
[1]

Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory,, Phys. Rev., 115 (1959), 485. doi: 10.1103/PhysRev.115.485.

[2]

B. Alziary, J. Fleckinger-Pellé and P. Takáč, Eigenfunctions and Hardy inequalities for a magnetic Schrödinger operator in $\mathbbR^2$,, Math. Methods Appl. Sci., 26 (2003), 1093. doi: 10.1002/mma.402.

[3]

V. Bonnaillie-Noël and B. Helffer, Numerical analysis of nodal sets for eigenvalues of Aharonov-Bohm Hamiltonians on the square with application to minimal partitions,, Exp. Math., 20 (2011), 304. doi: 10.1080/10586458.2011.565240.

[4]

V. Bonnaillie-Noël, B. Helffer and T. Hoffmann-Ostenhof, Aharonov-Bohm Hamiltonians, isospectrality and minimal partitions,, J. Phys. A, 42 (2009). doi: 10.1088/1751-8113/42/18/185203.

[5]

V. Bonnaillie-Noël, B. Helffer and G. Vial, Numerical simulations for nodal domains and spectral minimal partitions,, ESAIM Control Optim. Calc. Var., 16 (2010), 221. doi: 10.1051/cocv:2008074.

[6]

D. Bucur, G. Buttazzo and A. Henrot, Existence results for some optimal partition problems,, Adv. Math. Sci. Appl., 8 (1998), 571.

[7]

M. Conti, S. Terracini and G. Verzini, An optimal partition problem related to nonlinear eigenvalues,, J. Funct. Anal., 198 (2003), 160. doi: 10.1016/S0022-1236(02)00105-2.

[8]

M. Conti, S. Terracini and G. Verzini, On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulae,, Calc. Var. Partial Differential Equations, 22 (2005), 45. doi: 10.1007/s00526-004-0266-9.

[9]

M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems,, Indiana Univ. Math. J., 54 (2005), 779. doi: 10.1512/iumj.2005.54.2506.

[10]

R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I,, Interscience Publishers, (1953).

[11]

E. C. M. Crooks, E. N. Dancer and D. Hilhorst, On long-time dynamics for competition-diffusion systems with inhomogeneous Dirichlet boundary conditions,, Topol. Methods Nonlinear Anal., 30 (2007), 1.

[12]

NIST Digital Library of Mathematical Functions, Online companion to [20], Release 1.0.5 of 2012-10-01., Available from: , ().

[13]

B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and M. P. Owen, Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains,, Comm. Math. Phys., 202 (1999), 629. doi: 10.1007/s002200050599.

[14]

B. Helffer and T. Hoffmann-Ostenhof, On minimal partitions: New properties and applications to the disk,, in Spectrum and Dynamics, (2010), 119.

[15]

B. Helffer and T. Hoffmann-Ostenhof, Minimal partitions for anisotropic tori,, J. Spectr. Theory, (2013).

[16]

B. Helffer and T. Hoffmann-Ostenhof, On a magnetic characterization of spectral minimal partitions,, Journal of the European Mathematical Society, (2013). doi: 10.4171/JEMS/415.

[17]

B. Helffer, T. Hoffmann-Ostenhof and S. Terracini, Nodal domains and spectral minimal partitions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 101. doi: 10.1016/j.anihpc.2007.07.004.

[18]

B. Helffer, T. Hoffmann-Ostenhof and S. Terracini, On spectral minimal partitions: the case of the sphere,, in Around the Research of Vladimir Maz'ya. III, (2010), 153. doi: 10.1007/978-1-4419-1345-6_6.

[19]

D. Martin, Mélina, Bibliothèque de Calculs éléments Finis,, 2007. Available from: , ().

[20]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions,, Cambridge University Press, (2010).

[21]

K. Pankrashkin and S. Richard, Spectral and scattering theory for the Aharonov-Bohm operators,, Rev. Math. Phys., 23 (2011), 53. doi: 10.1142/S0129055X11004205.

[1]

Bernard Helffer, Thomas Hoffmann-Ostenhof, Susanna Terracini. Nodal minimal partitions in dimension $3$. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 617-635. doi: 10.3934/dcds.2010.28.617

[2]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[3]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[4]

Sarah Day; William D. Kalies; Konstantin Mischaikow and Thomas Wanner. Probabilistic and numerical validation of homology computations for nodal domains. Electronic Research Announcements, 2007, 13: 60-73.

[5]

Daniel Peterseim. Robustness of finite element simulations in densely packed random particle composites. Networks & Heterogeneous Media, 2012, 7 (1) : 113-126. doi: 10.3934/nhm.2012.7.113

[6]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[7]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[8]

Carlos Escudero, Fabricio Macià, Raúl Toral, Juan J. L. Velázquez. Kinetic theory and numerical simulations of two-species coagulation. Kinetic & Related Models, 2014, 7 (2) : 253-290. doi: 10.3934/krm.2014.7.253

[9]

Leonid Golinskii, Mikhail Kudryavtsev. An inverse spectral theory for finite CMV matrices. Inverse Problems & Imaging, 2010, 4 (1) : 93-110. doi: 10.3934/ipi.2010.4.93

[10]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2017216

[11]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[12]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[13]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[14]

So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343

[15]

Donald L. Brown, Vasilena Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1299-1326. doi: 10.3934/dcdss.2016052

[16]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[17]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[18]

Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269

[19]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[20]

Florian De Vuyst, Francesco Salvarani. Numerical simulations of degenerate transport problems. Kinetic & Related Models, 2014, 7 (3) : 463-476. doi: 10.3934/krm.2014.7.463

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]