2014, 19(8): 2691-2696. doi: 10.3934/dcdsb.2014.19.2691

Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences

1. 

University of Bialystok, ul. Akademicka 2, 15-267 Białystok

2. 

Lodz Unviersity of Technology, Wólczańska 215, 90-924 Łódź, Poland

Received  November 2013 Revised  May 2014 Published  August 2014

A class of higher order nonlinear neutral difference equations with quasidifferences is studied. Sufficient conditions under which considered equation has a solution which converges to zero are presented.
Citation: Ewa Schmeidel, Robert Jankowski. Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2691-2696. doi: 10.3934/dcdsb.2014.19.2691
References:
[1]

R. P. Agarwal, M. Bohner, S. R. Grace and D. O'Regan, Discrete Oscillation Theory,, Contemporary Mathematics and Its Applications, (2005). doi: 10.1155/9789775945198.

[2]

R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations,, Kluwer, (1997). doi: 10.1007/978-94-015-8899-7.

[3]

J. Banaş and B. Rzepka, An application of measure of noncompactness in study of asymptotic stability,, Appl. Math. Lett., 16 (2003), 1. doi: 10.1016/S0893-9659(02)00136-2.

[4]

O. Došlý, J. Graef and J. Jaroš, Forced oscillation of second order linear and half-linear difference equations,, Proc. Amer. Math. Soc., 131 (2003), 2859. doi: 10.1090/S0002-9939-02-06811-9.

[5]

M. Galewski and E. Schmeidel, On the well posed solutions for nonlinear second order neutral difference equations,, to appear in Mathematica Slovaca., ().

[6]

S. R Grace, R. P. Agarwal, M. Bohner and S. Pinelas, Oscillation of some fourth-order difference equations,, Int. J. Difference Equ., 6 (2011), 105.

[7]

R. Jankowski and E. Schmeidel, Almost oscillatory solutions of second order difference equations of neutral type,, Recent Advances in Delay Differential and Difference Equations, (2014).

[8]

R. Jankowski and E. Schmeidel, Almost oscillation criteria for second order neutral difference equation with quasidifferences,, Int. J. Difference Equ., 9 (2014), 77.

[9]

W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Applications,, Academic Press, (2001).

[10]

V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications,, Mathematics and its Applications, (1993). doi: 10.1007/978-94-017-1703-8.

[11]

G. Ladas, C. Qian and J. Yan, Oscillations of higher order neutral differential equations,, Portugal. Math., 48 (1991), 291.

[12]

J. Migda and M. Migda, On the asymptotic behavior of solutions of higher order nonlinear difference equations,, Nonlinear Anal., 47 (2001), 4687. doi: 10.1016/S0362-546X(01)00581-8.

[13]

J. Migda and M. Migda, On unstable neutral difference equations of higher order,, Indian J. Pure Appl. Math., 36 (2005), 557.

[14]

J. Migda and M. Migda, Oscillatory and asymptotic properties of solutions of even order neutral difference equations,, J.Difference Equ. Appl., 15 (2009), 1077. doi: 10.1080/10236190903032708.

[15]

M. Migda, A. Musielak and E. Schmeidel, On a class of fourth order nonlinear difference equations,, Advances in Difference Equations, 1 (2004), 23. doi: 10.1155/S1687183904308083.

[16]

E. Schmeidel, Asymptotic trichotomy of solutions of a class of even order difference equations with quasidifferences,, Difference Equations, (2007), 600. doi: 10.1142/9789812770752_0052.

[17]

E. Schmeidel, An application of measures of noncompactness in investigation of boundedness of solutions of second order neutral difference equations,, Adv. Difference Equ., 2013 (2013), 1. doi: 10.1186/1687-1847-2013-91.

[18]

E. Schmeidel and Z. Zbąszyniak, An application of Darbo's fixed point theorem in the investigation of periodicity of solutions of difference equations,, Comput. Math. Appl., 64 (2012), 2185. doi: 10.1016/j.camwa.2011.12.025.

[19]

E. Thandapani, N. Kavitha and S. Pinelas, Oscillation criteria for second-order nonlinear neutral difference equations of mixed type,, Adv. Difference Equ., 2012 (2012). doi: 10.1186/1687-1847-2012-4.

[20]

E. Thandapani, N. Kavitha and S. Pinelas, Comparison and oscillation theorem for second-order nonlinear neutral difference equations of mixed type,, Dynam. Systems Appl., 21 (2012), 83.

show all references

References:
[1]

R. P. Agarwal, M. Bohner, S. R. Grace and D. O'Regan, Discrete Oscillation Theory,, Contemporary Mathematics and Its Applications, (2005). doi: 10.1155/9789775945198.

[2]

R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations,, Kluwer, (1997). doi: 10.1007/978-94-015-8899-7.

[3]

J. Banaş and B. Rzepka, An application of measure of noncompactness in study of asymptotic stability,, Appl. Math. Lett., 16 (2003), 1. doi: 10.1016/S0893-9659(02)00136-2.

[4]

O. Došlý, J. Graef and J. Jaroš, Forced oscillation of second order linear and half-linear difference equations,, Proc. Amer. Math. Soc., 131 (2003), 2859. doi: 10.1090/S0002-9939-02-06811-9.

[5]

M. Galewski and E. Schmeidel, On the well posed solutions for nonlinear second order neutral difference equations,, to appear in Mathematica Slovaca., ().

[6]

S. R Grace, R. P. Agarwal, M. Bohner and S. Pinelas, Oscillation of some fourth-order difference equations,, Int. J. Difference Equ., 6 (2011), 105.

[7]

R. Jankowski and E. Schmeidel, Almost oscillatory solutions of second order difference equations of neutral type,, Recent Advances in Delay Differential and Difference Equations, (2014).

[8]

R. Jankowski and E. Schmeidel, Almost oscillation criteria for second order neutral difference equation with quasidifferences,, Int. J. Difference Equ., 9 (2014), 77.

[9]

W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Applications,, Academic Press, (2001).

[10]

V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications,, Mathematics and its Applications, (1993). doi: 10.1007/978-94-017-1703-8.

[11]

G. Ladas, C. Qian and J. Yan, Oscillations of higher order neutral differential equations,, Portugal. Math., 48 (1991), 291.

[12]

J. Migda and M. Migda, On the asymptotic behavior of solutions of higher order nonlinear difference equations,, Nonlinear Anal., 47 (2001), 4687. doi: 10.1016/S0362-546X(01)00581-8.

[13]

J. Migda and M. Migda, On unstable neutral difference equations of higher order,, Indian J. Pure Appl. Math., 36 (2005), 557.

[14]

J. Migda and M. Migda, Oscillatory and asymptotic properties of solutions of even order neutral difference equations,, J.Difference Equ. Appl., 15 (2009), 1077. doi: 10.1080/10236190903032708.

[15]

M. Migda, A. Musielak and E. Schmeidel, On a class of fourth order nonlinear difference equations,, Advances in Difference Equations, 1 (2004), 23. doi: 10.1155/S1687183904308083.

[16]

E. Schmeidel, Asymptotic trichotomy of solutions of a class of even order difference equations with quasidifferences,, Difference Equations, (2007), 600. doi: 10.1142/9789812770752_0052.

[17]

E. Schmeidel, An application of measures of noncompactness in investigation of boundedness of solutions of second order neutral difference equations,, Adv. Difference Equ., 2013 (2013), 1. doi: 10.1186/1687-1847-2013-91.

[18]

E. Schmeidel and Z. Zbąszyniak, An application of Darbo's fixed point theorem in the investigation of periodicity of solutions of difference equations,, Comput. Math. Appl., 64 (2012), 2185. doi: 10.1016/j.camwa.2011.12.025.

[19]

E. Thandapani, N. Kavitha and S. Pinelas, Oscillation criteria for second-order nonlinear neutral difference equations of mixed type,, Adv. Difference Equ., 2012 (2012). doi: 10.1186/1687-1847-2012-4.

[20]

E. Thandapani, N. Kavitha and S. Pinelas, Comparison and oscillation theorem for second-order nonlinear neutral difference equations of mixed type,, Dynam. Systems Appl., 21 (2012), 83.

[1]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[2]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[3]

Engu Satynarayana, Manas R. Sahoo, Manasa M. Higher order asymptotic for Burgers equation and Adhesion model. Communications on Pure & Applied Analysis, 2017, 16 (1) : 253-272. doi: 10.3934/cpaa.2017012

[4]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[5]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[6]

Uwe an der Heiden, Mann-Lin Liang. Sharkovsky orderings of higher order difference equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 599-614. doi: 10.3934/dcds.2004.11.599

[7]

Robert Jankowski, Barbara Łupińska, Magdalena Nockowska-Rosiak, Ewa Schmeidel. Monotonic solutions of a higher-order neutral difference system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 253-261. doi: 10.3934/dcdsb.2018017

[8]

Alina Gleska, Małgorzata Migda. Qualitative properties of solutions of higher order difference equations with deviating arguments. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 239-252. doi: 10.3934/dcdsb.2018016

[9]

David Simmons. Conditional measures and conditional expectation; Rohlin's Disintegration Theorem. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2565-2582. doi: 10.3934/dcds.2012.32.2565

[10]

Yuri Kalinin, Volker Reitmann, Nayil Yumaguzin. Asymptotic behavior of Maxwell's equation in one-space dimension with thermal effect. Conference Publications, 2011, 2011 (Special) : 754-762. doi: 10.3934/proc.2011.2011.754

[11]

Esha Chatterjee, Sk. Sarif Hassan. On the asymptotic character of a generalized rational difference equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1707-1718. doi: 10.3934/dcds.2018070

[12]

Feliz Minhós, A. I. Santos. Higher order two-point boundary value problems with asymmetric growth. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 127-137. doi: 10.3934/dcdss.2008.1.127

[13]

Xinmin Yang, Jin Yang, Heung Wing Joseph Lee. Strong duality theorem for multiobjective higher order nondifferentiable symmetric dual programs. Journal of Industrial & Management Optimization, 2013, 9 (3) : 525-530. doi: 10.3934/jimo.2013.9.525

[14]

Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317

[15]

Naoki Fujino, Mitsuru Yamazaki. Burgers' type equation with vanishing higher order. Communications on Pure & Applied Analysis, 2007, 6 (2) : 505-520. doi: 10.3934/cpaa.2007.6.505

[16]

Houda Hani, Moez Khenissi. Asymptotic behaviors of solutions for finite difference analogue of the Chipot-Weissler equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1421-1445. doi: 10.3934/dcdss.2016057

[17]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[18]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

[19]

Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391

[20]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure & Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]