October  2014, 19(8): 2593-2601. doi: 10.3934/dcdsb.2014.19.2593

Periodic solutions to differential equations with a generalized p-Laplacian

1. 

Centre of Mathematics and Physics, Technical University of Łódź, 90-924 Łódź, ul. Wólczańska 215, Poland

2. 

Institute of Mathematics, Technical University of Łódź, 90-924 Łódź, ul. Wólczańska 215, Poland, Poland

Received  October 2013 Revised  February 2014 Published  August 2014

The existence of a periodic solution to nonlinear ODEs with $\varphi$-Laplacian is proved under conditions on functions given in the equation (not on the unknown solutions). The results are applied to a relativistic pendulum equation in a general form.
Citation: Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593
References:
[1]

C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded $\phi$-Laplacians,, J. Dynam. Differential Equations, 22 (2010), 463. doi: 10.1007/s10884-010-9172-3. Google Scholar

[2]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian,, J. Differential Equations, 243 (2007), 536. doi: 10.1016/j.jde.2007.05.014. Google Scholar

[3]

C. Bereanu and P. J. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum,, Proc. Amer. Math. Soc., 140 (2012), 2713. doi: 10.1090/S0002-9939-2011-11101-8. Google Scholar

[4]

H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum,, Differential Integral Equations, 23 (2010), 801. Google Scholar

[5]

J. A. Cid and P. J. Torres, On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian,, Discrete Contin. Dyn. Syst., 33 (2013), 141. doi: 10.3934/dcds.2013.33.141. Google Scholar

[6]

W. Ge and J. Ren, An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacian,, Nonl. Anal. TMA, 58 (2004), 477. doi: 10.1016/j.na.2004.01.007. Google Scholar

[7]

S. Ma and Y. Zhang, Existence of infinitely many periodic solutions for ordinary p-Laplacian systems,, J. Math. Anal. Appl., 351 (2009), 469. doi: 10.1016/j.jmaa.2008.10.027. Google Scholar

[8]

R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators,, J. Differential Equations, 145 (1998), 367. doi: 10.1006/jdeq.1998.3425. Google Scholar

[9]

R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators,, J. Korean Math. Soc., 37 (2000), 665. Google Scholar

[10]

J. Mawhin, Periodic solutions of the forced pendulum: Classical vs relativistic,, Le Mathematiche, 65 (2010), 97. Google Scholar

[11]

Xiang Lv, Shiping Lu and Ping Yan, Periodic solutions of non-autonomous ordinary p-Laplacian systems,, J. Appl. Math. Comput., 35 (2011), 11. doi: 10.1007/s12190-009-0336-4. Google Scholar

[12]

P. J. Torres, Nondegeneracy of the periodically forced Liénard differential equation with $\phi$-Laplacian,, Commun. Contemp. Mathematics, 13 (2011), 283. doi: 10.1142/S0219199711004208. Google Scholar

show all references

References:
[1]

C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded $\phi$-Laplacians,, J. Dynam. Differential Equations, 22 (2010), 463. doi: 10.1007/s10884-010-9172-3. Google Scholar

[2]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian,, J. Differential Equations, 243 (2007), 536. doi: 10.1016/j.jde.2007.05.014. Google Scholar

[3]

C. Bereanu and P. J. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum,, Proc. Amer. Math. Soc., 140 (2012), 2713. doi: 10.1090/S0002-9939-2011-11101-8. Google Scholar

[4]

H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum,, Differential Integral Equations, 23 (2010), 801. Google Scholar

[5]

J. A. Cid and P. J. Torres, On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian,, Discrete Contin. Dyn. Syst., 33 (2013), 141. doi: 10.3934/dcds.2013.33.141. Google Scholar

[6]

W. Ge and J. Ren, An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacian,, Nonl. Anal. TMA, 58 (2004), 477. doi: 10.1016/j.na.2004.01.007. Google Scholar

[7]

S. Ma and Y. Zhang, Existence of infinitely many periodic solutions for ordinary p-Laplacian systems,, J. Math. Anal. Appl., 351 (2009), 469. doi: 10.1016/j.jmaa.2008.10.027. Google Scholar

[8]

R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators,, J. Differential Equations, 145 (1998), 367. doi: 10.1006/jdeq.1998.3425. Google Scholar

[9]

R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators,, J. Korean Math. Soc., 37 (2000), 665. Google Scholar

[10]

J. Mawhin, Periodic solutions of the forced pendulum: Classical vs relativistic,, Le Mathematiche, 65 (2010), 97. Google Scholar

[11]

Xiang Lv, Shiping Lu and Ping Yan, Periodic solutions of non-autonomous ordinary p-Laplacian systems,, J. Appl. Math. Comput., 35 (2011), 11. doi: 10.1007/s12190-009-0336-4. Google Scholar

[12]

P. J. Torres, Nondegeneracy of the periodically forced Liénard differential equation with $\phi$-Laplacian,, Commun. Contemp. Mathematics, 13 (2011), 283. doi: 10.1142/S0219199711004208. Google Scholar

[1]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[2]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[3]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[4]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[5]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

[6]

Stefano Marò. Relativistic pendulum and invariant curves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139

[7]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[8]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[9]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[10]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[11]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[12]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

[13]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[14]

Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469

[15]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[16]

Kanishka Perera, Andrzej Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 743-753. doi: 10.3934/dcds.2005.13.743

[17]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191

[18]

Francisco Odair de Paiva, Humberto Ramos Quoirin. Resonance and nonresonance for p-Laplacian problems with weighted eigenvalues conditions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1219-1227. doi: 10.3934/dcds.2009.25.1219

[19]

Marta García-Huidobro, Raul Manásevich, J. R. Ward. Vector p-Laplacian like operators, pseudo-eigenvalues, and bifurcation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 299-321. doi: 10.3934/dcds.2007.19.299

[20]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

[Back to Top]