October  2014, 19(8): 2535-2547. doi: 10.3934/dcdsb.2014.19.2535

Multiple periodic solutions to a discrete $p^{(k)}$ - Laplacian problem

1. 

Institute of Mathematics, Technical University of Lodz, Wolczanska 215, 90-924 Lodz, Poland

Received  November 2013 Revised  November 2013 Published  August 2014

We investigate the existence of multiple periodic solutions to the anisotropic discrete system. We apply the linking method and a new three critical point theorem which we provide.
Citation: Marek Galewski, Renata Wieteska. Multiple periodic solutions to a discrete $p^{(k)}$ - Laplacian problem. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2535-2547. doi: 10.3934/dcdsb.2014.19.2535
References:
[1]

R. P. Agarwal, Difference Equations and Inequalities,, Marcel Dekker, (1992). Google Scholar

[2]

C. Bereanu, P. Jebelean and C. Şerban, Periodic and Neumann problems for discrete $p(\cdot )-$Laplacian,, J. Math. Anal. Appl., 399 (2013), 75. doi: 10.1016/j.jmaa.2012.09.047. Google Scholar

[3]

C. Bereanu, P. Jebelean and C. Şerban, Ground state and mountain pass solutions for discrete $p(\cdot )-$Laplacian,, Bound. Value Probl., 104 (2012), 1. doi: 10.1186/1687-2770-2012-104. Google Scholar

[4]

G. Bonanno and P. Candito, Nonlinear difference equations investigated via critical point methods,, Nonlinear Anal., 70 (2009), 3180. doi: 10.1016/j.na.2008.04.021. Google Scholar

[5]

G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities,, J. Differ. Eqs, 244 (2008), 3031. doi: 10.1016/j.jde.2008.02.025. Google Scholar

[6]

G. Bonanno and S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition,, Appl. Anal., 89 (2010), 1. doi: 10.1080/00036810903397438. Google Scholar

[7]

A. Cabada and S. Tersian, Multiplicity of solutions of a two point boundary value problem for a fourth-order equation,, Appl. Math. Comput., 219 (2013), 5261. doi: 10.1016/j.amc.2012.11.066. Google Scholar

[8]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image processing,, SIAM J. Appl. Math., 66 (2006), 1383. doi: 10.1137/050624522. Google Scholar

[9]

S. N. Elaydi, An Introduction to Difference Equations,, Springer-Verlag, (1999). doi: 10.1007/978-1-4757-3110-1. Google Scholar

[10]

X. L. Fan and H. Zhang, Existence of solutions for $p(x)-$Lapacian dirichlet problem,, Nonlinear Anal., 52 (2003), 1843. doi: 10.1016/S0362-546X(02)00150-5. Google Scholar

[11]

M. Galewski and R. Wieteska, A note on the multiplicity of solutions to anisotropic discrete BVP's,, Appl. Math. Lett., 26 (2013), 524. doi: 10.1016/j.aml.2012.11.002. Google Scholar

[12]

A. Guiro, I. Nyanquini and S. Ouaro, On the solvability of discrete nonlinear Neumann problems involving the $p(x)-$Laplacian,, Adv. Difference Equ., 32 (2011). Google Scholar

[13]

P. Harjulehto, P. Hästö, U. V. Le and M. Nuortio, Overview of differential equations with non-standard growth,, Nonlinear Anal., 72 (2010), 4551. doi: 10.1016/j.na.2010.02.033. Google Scholar

[14]

B. Kone and S. Ouaro, Weak solutions for anisotropic discrete boundary value problems,, J. Difference Equ. Appl., 17 (2011), 1537. doi: 10.1080/10236191003657246. Google Scholar

[15]

V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications,, Academic Press, (1988). Google Scholar

[16]

S. Liu, Multiple periodic solutions for nonlinear difference systems involving the p-Laplacian,, J. Difference Equ. Appl., 17 (2011), 1591. doi: 10.1080/10236191003730480. Google Scholar

[17]

N. Marcu and G. Molica Bisci, Existence and multiplicity results for nonlinear discrete inclusions,, Electron. J. Differential Equations, (2012), 1. Google Scholar

[18]

M. Mihăilescu, V. Rădulescu and S. Tersian, Eigenvalue problems for anisotropic discrete boundary value problems., J. Difference Equ. Appl., 15 (2009), 557. doi: 10.1080/10236190802214977. Google Scholar

[19]

G. Molica Bisci and D. Repovs, On some variational algebraic problems,, Adv. Nonlinear Analysis, 2 (2013), 127. Google Scholar

[20]

G. Molica Bisci and D. Repovs, Nonlinear Algebraic Systems with discontinuous terms,, J. Math. Anal. Appl., 398 (2013), 846. doi: 10.1016/j.jmaa.2012.09.046. Google Scholar

[21]

M. Růžička, Electrorheological Fluids: Modelling and Mathematical Theory,, Lecture Notes in Mathematics, (1748). doi: 10.1007/BFb0104029. Google Scholar

[22]

P. Stehlík, On variational methods for periodic discrete problems,, J. Difference Equ. Appl., 14 (2008), 259. doi: 10.1080/10236190701483160. Google Scholar

[23]

Y. Tian, Z. Du and W. Ge, Existence results for discrete Sturm-Liouville problem via variational methods,, J. Difference Equ. Appl., 13 (2007), 467. doi: 10.1080/10236190601086451. Google Scholar

[24]

M. Willem, Minimax Theorem,, Birkhäuser, (1996). doi: 10.1007/978-1-4612-4146-1. Google Scholar

[25]

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675. Google Scholar

show all references

References:
[1]

R. P. Agarwal, Difference Equations and Inequalities,, Marcel Dekker, (1992). Google Scholar

[2]

C. Bereanu, P. Jebelean and C. Şerban, Periodic and Neumann problems for discrete $p(\cdot )-$Laplacian,, J. Math. Anal. Appl., 399 (2013), 75. doi: 10.1016/j.jmaa.2012.09.047. Google Scholar

[3]

C. Bereanu, P. Jebelean and C. Şerban, Ground state and mountain pass solutions for discrete $p(\cdot )-$Laplacian,, Bound. Value Probl., 104 (2012), 1. doi: 10.1186/1687-2770-2012-104. Google Scholar

[4]

G. Bonanno and P. Candito, Nonlinear difference equations investigated via critical point methods,, Nonlinear Anal., 70 (2009), 3180. doi: 10.1016/j.na.2008.04.021. Google Scholar

[5]

G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities,, J. Differ. Eqs, 244 (2008), 3031. doi: 10.1016/j.jde.2008.02.025. Google Scholar

[6]

G. Bonanno and S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition,, Appl. Anal., 89 (2010), 1. doi: 10.1080/00036810903397438. Google Scholar

[7]

A. Cabada and S. Tersian, Multiplicity of solutions of a two point boundary value problem for a fourth-order equation,, Appl. Math. Comput., 219 (2013), 5261. doi: 10.1016/j.amc.2012.11.066. Google Scholar

[8]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image processing,, SIAM J. Appl. Math., 66 (2006), 1383. doi: 10.1137/050624522. Google Scholar

[9]

S. N. Elaydi, An Introduction to Difference Equations,, Springer-Verlag, (1999). doi: 10.1007/978-1-4757-3110-1. Google Scholar

[10]

X. L. Fan and H. Zhang, Existence of solutions for $p(x)-$Lapacian dirichlet problem,, Nonlinear Anal., 52 (2003), 1843. doi: 10.1016/S0362-546X(02)00150-5. Google Scholar

[11]

M. Galewski and R. Wieteska, A note on the multiplicity of solutions to anisotropic discrete BVP's,, Appl. Math. Lett., 26 (2013), 524. doi: 10.1016/j.aml.2012.11.002. Google Scholar

[12]

A. Guiro, I. Nyanquini and S. Ouaro, On the solvability of discrete nonlinear Neumann problems involving the $p(x)-$Laplacian,, Adv. Difference Equ., 32 (2011). Google Scholar

[13]

P. Harjulehto, P. Hästö, U. V. Le and M. Nuortio, Overview of differential equations with non-standard growth,, Nonlinear Anal., 72 (2010), 4551. doi: 10.1016/j.na.2010.02.033. Google Scholar

[14]

B. Kone and S. Ouaro, Weak solutions for anisotropic discrete boundary value problems,, J. Difference Equ. Appl., 17 (2011), 1537. doi: 10.1080/10236191003657246. Google Scholar

[15]

V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications,, Academic Press, (1988). Google Scholar

[16]

S. Liu, Multiple periodic solutions for nonlinear difference systems involving the p-Laplacian,, J. Difference Equ. Appl., 17 (2011), 1591. doi: 10.1080/10236191003730480. Google Scholar

[17]

N. Marcu and G. Molica Bisci, Existence and multiplicity results for nonlinear discrete inclusions,, Electron. J. Differential Equations, (2012), 1. Google Scholar

[18]

M. Mihăilescu, V. Rădulescu and S. Tersian, Eigenvalue problems for anisotropic discrete boundary value problems., J. Difference Equ. Appl., 15 (2009), 557. doi: 10.1080/10236190802214977. Google Scholar

[19]

G. Molica Bisci and D. Repovs, On some variational algebraic problems,, Adv. Nonlinear Analysis, 2 (2013), 127. Google Scholar

[20]

G. Molica Bisci and D. Repovs, Nonlinear Algebraic Systems with discontinuous terms,, J. Math. Anal. Appl., 398 (2013), 846. doi: 10.1016/j.jmaa.2012.09.046. Google Scholar

[21]

M. Růžička, Electrorheological Fluids: Modelling and Mathematical Theory,, Lecture Notes in Mathematics, (1748). doi: 10.1007/BFb0104029. Google Scholar

[22]

P. Stehlík, On variational methods for periodic discrete problems,, J. Difference Equ. Appl., 14 (2008), 259. doi: 10.1080/10236190701483160. Google Scholar

[23]

Y. Tian, Z. Du and W. Ge, Existence results for discrete Sturm-Liouville problem via variational methods,, J. Difference Equ. Appl., 13 (2007), 467. doi: 10.1080/10236190601086451. Google Scholar

[24]

M. Willem, Minimax Theorem,, Birkhäuser, (1996). doi: 10.1007/978-1-4612-4146-1. Google Scholar

[25]

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675. Google Scholar

[1]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[2]

Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313

[3]

J. R. L. Webb. Remarks on positive solutions of some three point boundary value problems. Conference Publications, 2003, 2003 (Special) : 905-915. doi: 10.3934/proc.2003.2003.905

[4]

K. Q. Lan. Properties of kernels and eigenvalues for three point boundary value problems. Conference Publications, 2005, 2005 (Special) : 546-555. doi: 10.3934/proc.2005.2005.546

[5]

Wenying Feng. Solutions and positive solutions for some three-point boundary value problems. Conference Publications, 2003, 2003 (Special) : 263-272. doi: 10.3934/proc.2003.2003.263

[6]

John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337-344. doi: 10.3934/proc.2005.2005.337

[7]

John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269-275. doi: 10.3934/proc.2009.2009.269

[8]

Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial & Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761

[9]

Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control & Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289

[10]

Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063

[11]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[12]

Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457

[13]

K. Q. Lan, G. C. Yang. Optimal constants for two point boundary value problems. Conference Publications, 2007, 2007 (Special) : 624-633. doi: 10.3934/proc.2007.2007.624

[14]

Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations & Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016

[15]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[16]

Laetitia Paoli. A proximal-like algorithm for vibro-impact problems with a non-smooth set of constraints. Conference Publications, 2011, 2011 (Special) : 1186-1195. doi: 10.3934/proc.2011.2011.1186

[17]

Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025

[18]

Alexandre Caboussat, Roland Glowinski. A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 161-178. doi: 10.3934/cpaa.2009.8.161

[19]

Mikhail I. Belishev, Aleksei F. Vakulenko. Non-smooth unobservable states in control problem for the wave equation in $\mathbb{R}^3$. Evolution Equations & Control Theory, 2014, 3 (2) : 247-256. doi: 10.3934/eect.2014.3.247

[20]

John R. Graef, Shapour Heidarkhani, Lingju Kong. Existence of nontrivial solutions to systems of multi-point boundary value problems. Conference Publications, 2013, 2013 (special) : 273-281. doi: 10.3934/proc.2013.2013.273

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]