2013, 18(5): 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

Dynamics of a limit cycle oscillator with extended delay feedback

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

2. 

Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

Received  July 2012 Revised  November 2012 Published  March 2013

Investigating limit cycle oscillator with extended delay feedback is an efficient way to understand the dynamics of a global coupled ensemble or a large system with periodic oscillation. The stability and bifurcation of the arisen neutral equation are obtained. Stability switches and Hopf bifurcations appear when delay passes through a sequence of critical values. Global continuation of Hopf bifurcating periodic solutions and double--Hopf bifurcation are studied. With the help of the unfolding system near double--Hopf bifurcation obtained by using method of normal forms, quasiperiodic oscillations are found. The number of the coexisted periodic solutions is estimated. Finally, some numerical simulations are carried out.
Citation: Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439
References:
[1]

A. Sharma, P. R. Sharma and M. D. Shrimali, Amplitude death in nonlinear oscillators with indirect coupling,, Physics Lett. A, 376 (2012), 1562.

[2]

X. Wu and L. Wang, Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay,, Discrete Continuous Dynam. Systems-B, 13 (2010), 503. doi: 10.3934/dcdsb.2010.13.503.

[3]

M. Rosenblum and A. Pikovsky, Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms,, Phys. Rev. E, 70 (2004). doi: 10.1103/PhysRevE.70.041904.

[4]

Y. Kuramoto and I. Nishikawa, Statistical macrodynamics of large dynamical systems: Case of a phase transition in oscillator communities,, J. Statist. Phys., 49 (1987), 569. doi: 10.1007/BF01009349.

[5]

W. Jiang and J. Wei, Bifurcation analysis in a limit cycle oscillator with delayed feedback,, Chaos, 23 (2005), 817. doi: 10.1016/j.chaos.2004.05.028.

[6]

D. V. R. Reddy, A. Sen and G. L. Johnston, Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks,, Physica D, 144 (2000), 335. doi: 10.1016/S0167-2789(00)00086-5.

[7]

S. Kim, S. H. Park and C. S. Ryu, Multistability in coupled oscillator systems with time delay,, Phys. Rev. Lett., 79 (1997).

[8]

D. V. R. Reddy, A. Sen and G. L. Johnston, Time delay effects on coupled limit cycle oscillators at Hopf bifurcation,, Physica D, 129 (1999), 15. doi: 10.1016/S0167-2789(99)00004-4.

[9]

Y. Li, W. Jiang and H. Wang, Double Hopf bifurcation and quasi-periodic attractors in delay-coupled limit cycle oscillators,, J. Math. Anal. Appl., 387 (2012), 1114. doi: 10.1016/j.jmaa.2011.10.023.

[10]

K. Pyragas, Continuous control of chaos by self-controlling feedback,, Phys. Lett. A, 170 (1992), 421.

[11]

S. Yuan, Y. Song and J. Li, Oscillations in a plasmid turbidostat model with delayed feedback control,, Discrete Continuous Dynam. Systems-B, 15 (2011), 893. doi: 10.3934/dcdsb.2011.15.893.

[12]

J. Wei and W. Jiang, Stability and bifurcation analysis in Van der Pol's oscillator with delayed feedback,, J. Sound Vibrat., 283 (2005), 801. doi: 10.1016/j.jsv.2004.05.014.

[13]

J. E. S. Socolar, D. W. Sukow and D. J. Gauthier, Stabilizing unstable periodic orbits in fast dynamical systems,, Phys. Rev. E, 50 (1994).

[14]

K. Pyragas, Control of chaos via extended delay feedback,, Phys. Lett. A, 206 (1995), 323. doi: 10.1016/0375-9601(95)00654-L.

[15]

S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,", Springer, (1980).

[16]

Y. Kuang, On neutral delay logistic gause-type predator-prey systems,, Dynamics and Stability of Systems, 6 (1991), 173.

[17]

J. Wei and S. Ruan, Stability and global Hopf bifurcation for neutral differential equations,, Acta. Math. Sin., 45 (2002), 94.

[18]

C. Wang and J. Wei, Normal forms for NFDE with parameters and application to the lossless transmission line,, Nonlinear Dynam., 52 (2008), 199. doi: 10.1007/s11071-007-9271-9.

[19]

M. Weedermann, Normal forms for neutral functional differential equations,, in, (2001), 361.

[20]

M. Weedermann, Hopf bifurcation calculations for scalar neutral delay differential equations,, Nonlinearity, 19 (2006), 2091. doi: 10.1088/0951-7715/19/9/005.

[21]

J. Hale and S. Lunel, "Introduction to Functional Differential Equations,", Springer, (1993).

[22]

T. Faria and L. Magalhaes, Normal forms for retarded functional differential equation with parameters and applications to Hopf bifurcation,, J. Differ. Equations, 122 (1995), 181. doi: 10.1006/jdeq.1995.1144.

[23]

Z. Hu, P. Bi, W. Ma and S. Ruan, Bifurcations of an SIRS epidemic model with nonlinear incidence rate,, Discrete Continuous Dynam. Systems-B, 15 (2011), 93. doi: 10.3934/dcdsb.2011.15.93.

[24]

J. Carr, "Applications of Centre Manifold Theory,", Springer, (1981).

[25]

S. N. Chow and K. Lu, $C^k$ center unstable manifolds,, Proc. Roy. Soc. Edinburgh., 108 (1988), 303. doi: 10.1017/S0308210500014682.

[26]

J. Wu, "Theory and Applications of Partial Functional Differential Equations,", Springer, (1995). doi: 10.1007/978-1-4612-4050-1.

[27]

Y. Qu, J.Wei and S. Ruan, Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays,, Physica D, 239 (2010), 2011. doi: 10.1016/j.physd.2010.07.013.

[28]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer, (1983).

show all references

References:
[1]

A. Sharma, P. R. Sharma and M. D. Shrimali, Amplitude death in nonlinear oscillators with indirect coupling,, Physics Lett. A, 376 (2012), 1562.

[2]

X. Wu and L. Wang, Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay,, Discrete Continuous Dynam. Systems-B, 13 (2010), 503. doi: 10.3934/dcdsb.2010.13.503.

[3]

M. Rosenblum and A. Pikovsky, Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms,, Phys. Rev. E, 70 (2004). doi: 10.1103/PhysRevE.70.041904.

[4]

Y. Kuramoto and I. Nishikawa, Statistical macrodynamics of large dynamical systems: Case of a phase transition in oscillator communities,, J. Statist. Phys., 49 (1987), 569. doi: 10.1007/BF01009349.

[5]

W. Jiang and J. Wei, Bifurcation analysis in a limit cycle oscillator with delayed feedback,, Chaos, 23 (2005), 817. doi: 10.1016/j.chaos.2004.05.028.

[6]

D. V. R. Reddy, A. Sen and G. L. Johnston, Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks,, Physica D, 144 (2000), 335. doi: 10.1016/S0167-2789(00)00086-5.

[7]

S. Kim, S. H. Park and C. S. Ryu, Multistability in coupled oscillator systems with time delay,, Phys. Rev. Lett., 79 (1997).

[8]

D. V. R. Reddy, A. Sen and G. L. Johnston, Time delay effects on coupled limit cycle oscillators at Hopf bifurcation,, Physica D, 129 (1999), 15. doi: 10.1016/S0167-2789(99)00004-4.

[9]

Y. Li, W. Jiang and H. Wang, Double Hopf bifurcation and quasi-periodic attractors in delay-coupled limit cycle oscillators,, J. Math. Anal. Appl., 387 (2012), 1114. doi: 10.1016/j.jmaa.2011.10.023.

[10]

K. Pyragas, Continuous control of chaos by self-controlling feedback,, Phys. Lett. A, 170 (1992), 421.

[11]

S. Yuan, Y. Song and J. Li, Oscillations in a plasmid turbidostat model with delayed feedback control,, Discrete Continuous Dynam. Systems-B, 15 (2011), 893. doi: 10.3934/dcdsb.2011.15.893.

[12]

J. Wei and W. Jiang, Stability and bifurcation analysis in Van der Pol's oscillator with delayed feedback,, J. Sound Vibrat., 283 (2005), 801. doi: 10.1016/j.jsv.2004.05.014.

[13]

J. E. S. Socolar, D. W. Sukow and D. J. Gauthier, Stabilizing unstable periodic orbits in fast dynamical systems,, Phys. Rev. E, 50 (1994).

[14]

K. Pyragas, Control of chaos via extended delay feedback,, Phys. Lett. A, 206 (1995), 323. doi: 10.1016/0375-9601(95)00654-L.

[15]

S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,", Springer, (1980).

[16]

Y. Kuang, On neutral delay logistic gause-type predator-prey systems,, Dynamics and Stability of Systems, 6 (1991), 173.

[17]

J. Wei and S. Ruan, Stability and global Hopf bifurcation for neutral differential equations,, Acta. Math. Sin., 45 (2002), 94.

[18]

C. Wang and J. Wei, Normal forms for NFDE with parameters and application to the lossless transmission line,, Nonlinear Dynam., 52 (2008), 199. doi: 10.1007/s11071-007-9271-9.

[19]

M. Weedermann, Normal forms for neutral functional differential equations,, in, (2001), 361.

[20]

M. Weedermann, Hopf bifurcation calculations for scalar neutral delay differential equations,, Nonlinearity, 19 (2006), 2091. doi: 10.1088/0951-7715/19/9/005.

[21]

J. Hale and S. Lunel, "Introduction to Functional Differential Equations,", Springer, (1993).

[22]

T. Faria and L. Magalhaes, Normal forms for retarded functional differential equation with parameters and applications to Hopf bifurcation,, J. Differ. Equations, 122 (1995), 181. doi: 10.1006/jdeq.1995.1144.

[23]

Z. Hu, P. Bi, W. Ma and S. Ruan, Bifurcations of an SIRS epidemic model with nonlinear incidence rate,, Discrete Continuous Dynam. Systems-B, 15 (2011), 93. doi: 10.3934/dcdsb.2011.15.93.

[24]

J. Carr, "Applications of Centre Manifold Theory,", Springer, (1981).

[25]

S. N. Chow and K. Lu, $C^k$ center unstable manifolds,, Proc. Roy. Soc. Edinburgh., 108 (1988), 303. doi: 10.1017/S0308210500014682.

[26]

J. Wu, "Theory and Applications of Partial Functional Differential Equations,", Springer, (1995). doi: 10.1007/978-1-4612-4050-1.

[27]

Y. Qu, J.Wei and S. Ruan, Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays,, Physica D, 239 (2010), 2011. doi: 10.1016/j.physd.2010.07.013.

[28]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer, (1983).

[1]

Mikhail Kamenskii, Boris Mikhaylenko. Bifurcation of periodic solutions from a degenerated cycle in equations of neutral type with a small delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 437-452. doi: 10.3934/dcdsb.2013.18.437

[2]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[3]

Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197

[4]

Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503

[5]

Orit Lavi, Doron Ginsberg, Yoram Louzoun. Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences & Engineering, 2011, 8 (2) : 445-461. doi: 10.3934/mbe.2011.8.445

[6]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[7]

Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

[8]

Jaume Llibre, Ernesto Pérez-Chavela. Zero-Hopf bifurcation for a class of Lorenz-type systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1731-1736. doi: 10.3934/dcdsb.2014.19.1731

[9]

Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846

[10]

Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

[11]

Domingo Gomez-Perez, Ana-Isabel Gomez, Andrew Tirkel. Arrays composed from the extended rational cycle. Advances in Mathematics of Communications, 2017, 11 (2) : 313-327. doi: 10.3934/amc.2017024

[12]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[13]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[14]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[15]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[16]

Jean-François Couchouron, Mikhail Kamenskii, Paolo Nistri. An infinite dimensional bifurcation problem with application to a class of functional differential equations of neutral type. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1845-1859. doi: 10.3934/cpaa.2013.12.1845

[17]

Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065

[18]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[19]

Zhiqin Qiao, Deming Zhu, Qiuying Lu. Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1009-1025. doi: 10.3934/dcdsb.2012.17.1009

[20]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]