2012, 17(3): 977-992. doi: 10.3934/dcdsb.2012.17.977

A constructive proof of the existence of a semi-conjugacy for a one dimensional map

1. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287-1804, United States

2. 

Department of Financial and Computational Mathematics, Providence University, Taichung 43301, Taiwan

Received  March 2011 Revised  September 2011 Published  January 2012

A continuous map $f:[0,1]\rightarrow[0,1]$ is called an $n$-modal map if there is a partition $0=z_0 < z_1 < ... < z_n=1$ such that $f(z_{2i})=0$, $f(z_{2i+1})=1$ and, $f$ is (not necessarily strictly) monotone on each $[z_{i},z_{i+1}]$. It is well-known that such a map is topologically semi-conjugate to a piecewise linear map; however here we prove that the topological semi-conjugacy is unique for this class of maps; also our proof is constructive and yields a sequence of easily computable piecewise linear maps which converges uniformly to the semi-conjugacy. We also give equivalent conditions for the semi-conjugacy to be a conjugacy as in Parry's theorem. Related work was done by Fotiades and Boudourides and Banks, Dragan and Jones, who however only considered cases where a conjugacy exists. Banks, Dragan and Jones gave an algorithm to construct the conjugacy map but only for one-hump maps.
Citation: Dyi-Shing Ou, Kenneth James Palmer. A constructive proof of the existence of a semi-conjugacy for a one dimensional map. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 977-992. doi: 10.3934/dcdsb.2012.17.977
References:
[1]

, IEEE standard for floating-point arithmetic,, The Institute of Electrical and Electronics Engineers, (2008).

[2]

Ll. Alsedà, J. Llibre and M. Misurewicz, "Combinatorial Dynamics and Entropy in Dimension One,", 2nd edition, 5 (2000).

[3]

J. Banks, V. Dragan and A. Jones, "Chaos: A Mathematical Introduction,", Australian Mathematical Society Lecture Series, 18 (2003).

[4]

K. M. Brucks and H. Bruin, "Topics from One-Dimensional Dynamics,", London Mathematical Society Student Texts, 62 (2004).

[5]

R. L. Devaney, "An Introduction to Chaotic Dynamical Systems,", 2nd edition, (1989).

[6]

N. A. Fotiades and M. A. Boudourides, Topological conjugacies of piecewise monotone interval maps,, International Journal of Mathematics and Mathematical Sciences, 25 (2001), 119. doi: 10.1155/S0161171201004343.

[7]

P. Henrici, "Essentials of Numerical Analysis with Pocket Calculator Demonstrations,", John Wiley & Sons, (1982).

[8]

J. Milnor and W. Thurston, On iterated maps of the interval,, in, 1342 (1988), 1986.

[9]

W. Parry, Symbolic dynamics and transformations of the unit interval,, Transactions of the American Mathematical Society, 122 (1966), 368. doi: 10.1090/S0002-9947-1966-0197683-5.

show all references

References:
[1]

, IEEE standard for floating-point arithmetic,, The Institute of Electrical and Electronics Engineers, (2008).

[2]

Ll. Alsedà, J. Llibre and M. Misurewicz, "Combinatorial Dynamics and Entropy in Dimension One,", 2nd edition, 5 (2000).

[3]

J. Banks, V. Dragan and A. Jones, "Chaos: A Mathematical Introduction,", Australian Mathematical Society Lecture Series, 18 (2003).

[4]

K. M. Brucks and H. Bruin, "Topics from One-Dimensional Dynamics,", London Mathematical Society Student Texts, 62 (2004).

[5]

R. L. Devaney, "An Introduction to Chaotic Dynamical Systems,", 2nd edition, (1989).

[6]

N. A. Fotiades and M. A. Boudourides, Topological conjugacies of piecewise monotone interval maps,, International Journal of Mathematics and Mathematical Sciences, 25 (2001), 119. doi: 10.1155/S0161171201004343.

[7]

P. Henrici, "Essentials of Numerical Analysis with Pocket Calculator Demonstrations,", John Wiley & Sons, (1982).

[8]

J. Milnor and W. Thurston, On iterated maps of the interval,, in, 1342 (1988), 1986.

[9]

W. Parry, Symbolic dynamics and transformations of the unit interval,, Transactions of the American Mathematical Society, 122 (1966), 368. doi: 10.1090/S0002-9947-1966-0197683-5.

[1]

Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144

[2]

Fritz Colonius, Alexandre J. Santana. Topological conjugacy for affine-linear flows and control systems. Communications on Pure & Applied Analysis, 2011, 10 (3) : 847-857. doi: 10.3934/cpaa.2011.10.847

[3]

Lorenzo Sella, Pieter Collins. Computation of symbolic dynamics for two-dimensional piecewise-affine maps. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 739-767. doi: 10.3934/dcdsb.2011.15.739

[4]

Ming-Chia Li, Ming-Jiea Lyu. Topological conjugacy for Lipschitz perturbations of non-autonomous systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5011-5024. doi: 10.3934/dcds.2016017

[5]

Álvaro Castañeda, Gonzalo Robledo. Dichotomy spectrum and almost topological conjugacy on nonautonomus unbounded difference systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2287-2304. doi: 10.3934/dcds.2018094

[6]

Peter Ashwin, Xin-Chu Fu. Symbolic analysis for some planar piecewise linear maps. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1533-1548. doi: 10.3934/dcds.2003.9.1533

[7]

Alfredo Marzocchi, Sara Zandonella Necca. Attractors for dynamical systems in topological spaces. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 585-597. doi: 10.3934/dcds.2002.8.585

[8]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[9]

Prof. Dr.rer.nat Widodo. Topological entropy of shift function on the sequences space induced by expanding piecewise linear transformations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 191-208. doi: 10.3934/dcds.2002.8.191

[10]

Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147

[11]

Rafel Prohens, Antonio E. Teruel. Canard trajectories in 3D piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4595-4611. doi: 10.3934/dcds.2013.33.4595

[12]

Victoriano Carmona, Emilio Freire, Soledad Fernández-García. Periodic orbits and invariant cones in three-dimensional piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 59-72. doi: 10.3934/dcds.2015.35.59

[13]

João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465

[14]

H.T. Banks, S. Dediu, H.K. Nguyen. Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space. Mathematical Biosciences & Engineering, 2007, 4 (3) : 403-430. doi: 10.3934/mbe.2007.4.403

[15]

Yong Fang. On smooth conjugacy of expanding maps in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 687-697. doi: 10.3934/dcds.2011.30.687

[16]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of two-dimensional piecewise linear maps: Abundance of 2-D strange attractors. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 941-966. doi: 10.3934/dcds.2018040

[17]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-17. doi: 10.3934/dcdsb.2018055

[18]

Matthias Morzfeld, Daniel T. Kawano, Fai Ma. Characterization of damped linear dynamical systems in free motion. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 49-62. doi: 10.3934/naco.2013.3.49

[19]

Claudio Buzzi, Claudio Pessoa, Joan Torregrosa. Piecewise linear perturbations of a linear center. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3915-3936. doi: 10.3934/dcds.2013.33.3915

[20]

Xiaoming Wang. Numerical algorithms for stationary statistical properties of dissipative dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4599-4618. doi: 10.3934/dcds.2016.36.4599

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]